langchain_community.llms.you ηζΊδ»£η
import os
from typing import Any, Dict, Generator, Iterator, List, Literal, Optional
import requests
from langchain_core.callbacks.manager import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk
from pydantic import Field
SMART_ENDPOINT = "https://chat-api.you.com/smart"
RESEARCH_ENDPOINT = "https://chat-api.you.com/research"
def _request(base_url: str, api_key: str, **kwargs: Any) -> Dict[str, Any]:
"""
NOTE: This function can be replaced by a OpenAPI-generated Python SDK in the future,
for better input/output typing support.
"""
headers = {"x-api-key": api_key}
response = requests.post(base_url, headers=headers, json=kwargs)
response.raise_for_status()
return response.json()
def _request_stream(
base_url: str, api_key: str, **kwargs: Any
) -> Generator[str, None, None]:
headers = {"x-api-key": api_key}
params = dict(**kwargs, stream=True)
response = requests.post(base_url, headers=headers, stream=True, json=params)
response.raise_for_status()
# Explicitly coercing the response to a generator to satisfy mypy
event_source = (bytestring for bytestring in response)
try:
import sseclient
client = sseclient.SSEClient(event_source)
except ImportError:
raise ImportError(
(
"Could not import `sseclient`. "
"Please install it with `pip install sseclient-py`."
)
)
for event in client.events():
if event.event in ("search_results", "done"):
pass
elif event.event == "token":
yield event.data
elif event.event == "error":
raise ValueError(f"Error in response: {event.data}")
else:
raise NotImplementedError(f"Unknown event type {event.event}")
[docs]
class You(LLM):
"""Wrapper around You.com's conversational Smart and Research APIs.
Each API endpoint is designed to generate conversational
responses to a variety of query types, including inline citations
and web results when relevant.
Smart Endpoint:
- Quick, reliable answers for a variety of questions
- Cites the entire web page URL
Research Endpoint:
- In-depth answers with extensive citations for a variety of questions
- Cites the specific web page snippet relevant to the claim
To connect to the You.com api requires an API key which
you can get at https://api.you.com.
For more information, check out the documentations at
https://documentation.you.com/api-reference/.
Args:
endpoint: You.com conversational endpoints. Choose from "smart" or "research"
ydc_api_key: You.com API key, if `YDC_API_KEY` is not set in the environment
"""
endpoint: Literal["smart", "research"] = Field(
"smart",
description=(
'You.com conversational endpoints. Choose from "smart" or "research"'
),
)
ydc_api_key: Optional[str] = Field(
None,
description="You.com API key, if `YDC_API_KEY` is not set in the envrioment",
)
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
if stop:
raise NotImplementedError(
"Stop words are not implemented for You.com endpoints."
)
params = {"query": prompt}
response = _request(self._request_endpoint, api_key=self._api_key, **params)
return response["answer"]
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
if stop:
raise NotImplementedError(
"Stop words are not implemented for You.com endpoints."
)
params = {"query": prompt}
for token in _request_stream(
self._request_endpoint, api_key=self._api_key, **params
):
yield GenerationChunk(text=token)
@property
def _request_endpoint(self) -> str:
if self.endpoint == "smart":
return SMART_ENDPOINT
return RESEARCH_ENDPOINT
@property
def _api_key(self) -> str:
return self.ydc_api_key or os.environ["YDC_API_KEY"]
@property
def _llm_type(self) -> str:
return "you.com"