langchain_community.retrievers.bedrock ηζΊδ»£η
from typing import Any, Dict, List, Optional
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever
from pydantic import BaseModel, model_validator
[docs]
class VectorSearchConfig(BaseModel, extra="allow"): # type: ignore[call-arg]
"""Configuration for vector search."""
numberOfResults: int = 4
[docs]
class RetrievalConfig(BaseModel, extra="allow"): # type: ignore[call-arg]
"""Configuration for retrieval."""
vectorSearchConfiguration: VectorSearchConfig
[docs]
class AmazonKnowledgeBasesRetriever(BaseRetriever):
"""Amazon Bedrock Knowledge Bases retriever.
See https://aws.amazon.com/bedrock/knowledge-bases for more info.
Setup:
Install ``langchain-aws``:
.. code-block:: bash
pip install -U langchain-aws
Key init args:
knowledge_base_id: Knowledge Base ID.
region_name: The aws region e.g., `us-west-2`.
Fallback to AWS_DEFAULT_REGION env variable or region specified in
~/.aws/config.
credentials_profile_name: The name of the profile in the ~/.aws/credentials
or ~/.aws/config files, which has either access keys or role information
specified. If not specified, the default credential profile or, if on an
EC2 instance, credentials from IMDS will be used.
client: boto3 client for bedrock agent runtime.
retrieval_config: Configuration for retrieval.
Instantiate:
.. code-block:: python
from langchain_community.retrievers import AmazonKnowledgeBasesRetriever
retriever = AmazonKnowledgeBasesRetriever(
knowledge_base_id="<knowledge-base-id>",
retrieval_config={
"vectorSearchConfiguration": {
"numberOfResults": 4
}
},
)
Usage:
.. code-block:: python
query = "..."
retriever.invoke(query)
Use within a chain:
.. code-block:: python
from langchain_aws import ChatBedrockConverse
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI
prompt = ChatPromptTemplate.from_template(
\"\"\"Answer the question based only on the context provided.
Context: {context}
Question: {question}\"\"\"
)
llm = ChatBedrockConverse(
model_id="anthropic.claude-3-5-sonnet-20240620-v1:0"
)
def format_docs(docs):
return "\\n\\n".join(doc.page_content for doc in docs)
chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
chain.invoke("...")
""" # noqa: E501
knowledge_base_id: str
region_name: Optional[str] = None
credentials_profile_name: Optional[str] = None
endpoint_url: Optional[str] = None
client: Any
retrieval_config: RetrievalConfig
@model_validator(mode="before")
@classmethod
def create_client(cls, values: Dict[str, Any]) -> Any:
if values.get("client") is not None:
return values
try:
import boto3
from botocore.client import Config
from botocore.exceptions import UnknownServiceError
if values.get("credentials_profile_name"):
session = boto3.Session(profile_name=values["credentials_profile_name"])
else:
# use default credentials
session = boto3.Session()
client_params = {
"config": Config(
connect_timeout=120, read_timeout=120, retries={"max_attempts": 0}
)
}
if values.get("region_name"):
client_params["region_name"] = values["region_name"]
if values.get("endpoint_url"):
client_params["endpoint_url"] = values["endpoint_url"]
values["client"] = session.client("bedrock-agent-runtime", **client_params)
return values
except ImportError:
raise ImportError(
"Could not import boto3 python package. "
"Please install it with `pip install boto3`."
)
except UnknownServiceError as e:
raise ImportError(
"Ensure that you have installed the latest boto3 package "
"that contains the API for `bedrock-runtime-agent`."
) from e
except Exception as e:
raise ValueError(
"Could not load credentials to authenticate with AWS client. "
"Please check that credentials in the specified "
"profile name are valid."
) from e
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
response = self.client.retrieve(
retrievalQuery={"text": query.strip()},
knowledgeBaseId=self.knowledge_base_id,
retrievalConfiguration=self.retrieval_config.dict(),
)
results = response["retrievalResults"]
documents = []
for result in results:
content = result["content"]["text"]
result.pop("content")
if "score" not in result:
result["score"] = 0
if "metadata" in result:
result["source_metadata"] = result.pop("metadata")
documents.append(
Document(
page_content=content,
metadata=result,
)
)
return documents