langchain_community.retrievers.docarray ηš„ζΊδ»£η 

from enum import Enum
from typing import Any, Dict, List, Optional, Union

import numpy as np
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.retrievers import BaseRetriever
from langchain_core.utils.pydantic import get_fields
from pydantic import ConfigDict

from langchain_community.vectorstores.utils import maximal_marginal_relevance


[docs] class SearchType(str, Enum): """Enumerator of the types of search to perform.""" similarity = "similarity" mmr = "mmr"
[docs] class DocArrayRetriever(BaseRetriever): """`DocArray Document Indices` retriever. Currently, it supports 5 backends: InMemoryExactNNIndex, HnswDocumentIndex, QdrantDocumentIndex, ElasticDocIndex, and WeaviateDocumentIndex. Args: index: One of the above-mentioned index instances embeddings: Embedding model to represent text as vectors search_field: Field to consider for searching in the documents. Should be an embedding/vector/tensor. content_field: Field that represents the main content in your document schema. Will be used as a `page_content`. Everything else will go into `metadata`. search_type: Type of search to perform (similarity / mmr) filters: Filters applied for document retrieval. top_k: Number of documents to return """ index: Any = None embeddings: Embeddings search_field: str content_field: str search_type: SearchType = SearchType.similarity top_k: int = 1 filters: Optional[Any] = None model_config = ConfigDict( arbitrary_types_allowed=True, ) def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, ) -> List[Document]: """Get documents relevant for a query. Args: query: string to find relevant documents for Returns: List of relevant documents """ query_emb = np.array(self.embeddings.embed_query(query)) if self.search_type == SearchType.similarity: results = self._similarity_search(query_emb) elif self.search_type == SearchType.mmr: results = self._mmr_search(query_emb) else: raise ValueError( f"Search type {self.search_type} does not exist. " f"Choose either 'similarity' or 'mmr'." ) return results def _search( self, query_emb: np.ndarray, top_k: int ) -> List[Union[Dict[str, Any], Any]]: """ Perform a search using the query embedding and return top_k documents. Args: query_emb: Query represented as an embedding top_k: Number of documents to return Returns: A list of top_k documents matching the query """ from docarray.index import ElasticDocIndex, WeaviateDocumentIndex filter_args = {} search_field = self.search_field if isinstance(self.index, WeaviateDocumentIndex): filter_args["where_filter"] = self.filters search_field = "" elif isinstance(self.index, ElasticDocIndex): filter_args["query"] = self.filters else: filter_args["filter_query"] = self.filters if self.filters: query = ( self.index.build_query() # get empty query object .find( query=query_emb, search_field=search_field ) # add vector similarity search .filter(**filter_args) # add filter search .build(limit=top_k) # build the query ) # execute the combined query and return the results docs = self.index.execute_query(query) if hasattr(docs, "documents"): docs = docs.documents docs = docs[:top_k] else: docs = self.index.find( query=query_emb, search_field=search_field, limit=top_k ).documents return docs def _similarity_search(self, query_emb: np.ndarray) -> List[Document]: """ Perform a similarity search. Args: query_emb: Query represented as an embedding Returns: A list of documents most similar to the query """ docs = self._search(query_emb=query_emb, top_k=self.top_k) results = [self._docarray_to_langchain_doc(doc) for doc in docs] return results def _mmr_search(self, query_emb: np.ndarray) -> List[Document]: """ Perform a maximal marginal relevance (mmr) search. Args: query_emb: Query represented as an embedding Returns: A list of diverse documents related to the query """ docs = self._search(query_emb=query_emb, top_k=20) mmr_selected = maximal_marginal_relevance( query_emb, [ doc[self.search_field] if isinstance(doc, dict) else getattr(doc, self.search_field) for doc in docs ], k=self.top_k, ) results = [self._docarray_to_langchain_doc(docs[idx]) for idx in mmr_selected] return results def _docarray_to_langchain_doc(self, doc: Union[Dict[str, Any], Any]) -> Document: """ Convert a DocArray document (which also might be a dict) to a langchain document format. DocArray document can contain arbitrary fields, so the mapping is done in the following way: page_content <-> content_field metadata <-> all other fields excluding tensors and embeddings (so float, int, string) Args: doc: DocArray document Returns: Document in langchain format Raises: ValueError: If the document doesn't contain the content field """ fields = doc.keys() if isinstance(doc, dict) else get_fields(doc) if self.content_field not in fields: raise ValueError( f"Document does not contain the content field - {self.content_field}." ) lc_doc = Document( page_content=doc[self.content_field] if isinstance(doc, dict) else getattr(doc, self.content_field) ) for name in fields: value = doc[name] if isinstance(doc, dict) else getattr(doc, name) if ( isinstance(value, (str, int, float, bool)) and name != self.content_field ): lc_doc.metadata[name] = value return lc_doc