langchain_community.retrievers.dria_index ηš„ζΊδ»£η 

"""Wrapper around Dria Retriever."""

from typing import Any, List, Optional

from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever

from langchain_community.utilities import DriaAPIWrapper


[docs] class DriaRetriever(BaseRetriever): """`Dria` retriever using the DriaAPIWrapper.""" api_wrapper: DriaAPIWrapper def __init__(self, api_key: str, contract_id: Optional[str] = None, **kwargs: Any): """ Initialize the DriaRetriever with a DriaAPIWrapper instance. Args: api_key: The API key for Dria. contract_id: The contract ID of the knowledge base to interact with. """ api_wrapper = DriaAPIWrapper(api_key=api_key, contract_id=contract_id) super().__init__(api_wrapper=api_wrapper, **kwargs) # type: ignore[call-arg]
[docs] def create_knowledge_base( self, name: str, description: str, category: str = "Unspecified", embedding: str = "jina", ) -> str: """Create a new knowledge base in Dria. Args: name: The name of the knowledge base. description: The description of the knowledge base. category: The category of the knowledge base. embedding: The embedding model to use for the knowledge base. Returns: The ID of the created knowledge base. """ response = self.api_wrapper.create_knowledge_base( name, description, category, embedding ) return response
[docs] def add_texts( self, texts: List, ) -> None: """Add texts to the Dria knowledge base. Args: texts: An iterable of texts and metadatas to add to the knowledge base. Returns: List of IDs representing the added texts. """ data = [{"text": text["text"], "metadata": text["metadata"]} for text in texts] self.api_wrapper.insert_data(data)
def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: """Retrieve relevant documents from Dria based on a query. Args: query: The query string to search for in the knowledge base. run_manager: Callback manager for the retriever run. Returns: A list of Documents containing the search results. """ results = self.api_wrapper.search(query) docs = [ Document( page_content=result["metadata"], metadata={"id": result["id"], "score": result["score"]}, ) for result in results ] return docs