langchain_community.retrievers.embedchain ηš„ζΊδ»£η 

"""Wrapper around Embedchain Retriever."""

from __future__ import annotations

from typing import Any, Iterable, List, Optional

from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever


[docs] class EmbedchainRetriever(BaseRetriever): """`Embedchain` retriever.""" client: Any """Embedchain Pipeline."""
[docs] @classmethod def create(cls, yaml_path: Optional[str] = None) -> EmbedchainRetriever: """ Create a EmbedchainRetriever from a YAML configuration file. Args: yaml_path: Path to the YAML configuration file. If not provided, a default configuration is used. Returns: An instance of EmbedchainRetriever. """ from embedchain import Pipeline # Create an Embedchain Pipeline instance if yaml_path: client = Pipeline.from_config(yaml_path=yaml_path) else: client = Pipeline() return cls(client=client)
[docs] def add_texts( self, texts: Iterable[str], ) -> List[str]: """Run more texts through the embeddings and add to the retriever. Args: texts: Iterable of strings/URLs to add to the retriever. Returns: List of ids from adding the texts into the retriever. """ ids = [] for text in texts: _id = self.client.add(text) ids.append(_id) return ids
def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: res = self.client.search(query) docs = [] for r in res: docs.append( Document( page_content=r["context"], metadata={ "source": r["metadata"]["url"], "document_id": r["metadata"]["doc_id"], }, ) ) return docs