langchain_community.retrievers.llama_index ηš„ζΊδ»£η 

from typing import Any, Dict, List, cast

from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever
from pydantic import Field


[docs] class LlamaIndexRetriever(BaseRetriever): """`LlamaIndex` retriever. It is used for the question-answering with sources over an LlamaIndex data structure.""" index: Any = None """LlamaIndex index to query.""" query_kwargs: Dict = Field(default_factory=dict) """Keyword arguments to pass to the query method.""" def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: """Get documents relevant for a query.""" try: from llama_index.core.base.response.schema import Response from llama_index.core.indices.base import BaseGPTIndex except ImportError: raise ImportError( "You need to install `pip install llama-index` to use this retriever." ) index = cast(BaseGPTIndex, self.index) response = index.query(query, **self.query_kwargs) response = cast(Response, response) # parse source nodes docs = [] for source_node in response.source_nodes: metadata = source_node.metadata or {} docs.append( Document(page_content=source_node.get_content(), metadata=metadata) ) return docs
[docs] class LlamaIndexGraphRetriever(BaseRetriever): """`LlamaIndex` graph data structure retriever. It is used for question-answering with sources over an LlamaIndex graph data structure.""" graph: Any = None """LlamaIndex graph to query.""" query_configs: List[Dict] = Field(default_factory=list) """List of query configs to pass to the query method.""" def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: """Get documents relevant for a query.""" try: from llama_index.core.base.response.schema import Response from llama_index.core.composability.base import ( QUERY_CONFIG_TYPE, ComposableGraph, ) except ImportError: raise ImportError( "You need to install `pip install llama-index` to use this retriever." ) graph = cast(ComposableGraph, self.graph) # for now, inject response_mode="no_text" into query configs for query_config in self.query_configs: query_config["response_mode"] = "no_text" query_configs = cast(List[QUERY_CONFIG_TYPE], self.query_configs) response = graph.query(query, query_configs=query_configs) response = cast(Response, response) # parse source nodes docs = [] for source_node in response.source_nodes: metadata = source_node.metadata or {} docs.append( Document(page_content=source_node.get_content(), metadata=metadata) ) return docs