langchain_community.retrievers.milvus ηš„ζΊδ»£η 

"""Milvus Retriever"""

import warnings
from typing import Any, Dict, List, Optional

from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.retrievers import BaseRetriever
from pydantic import model_validator

from langchain_community.vectorstores.milvus import Milvus

# TODO: Update to MilvusClient + Hybrid Search when available


[docs] class MilvusRetriever(BaseRetriever): """Milvus API retriever. See detailed instructions here: https://python.langchain.com/docs/integrations/retrievers/milvus_hybrid_search/ Setup: Install ``langchain-milvus`` and other dependencies: .. code-block:: bash pip install -U pymilvus[model] langchain-milvus Key init args: collection: Milvus Collection Instantiate: .. code-block:: python retriever = MilvusCollectionHybridSearchRetriever(collection=collection) Usage: .. code-block:: python query = "What are the story about ventures?" retriever.invoke(query) .. code-block:: none [Document(page_content="In 'The Lost Expedition' by Caspian Grey...", metadata={'doc_id': '449281835035545843'}), Document(page_content="In 'The Phantom Pilgrim' by Rowan Welles...", metadata={'doc_id': '449281835035545845'}), Document(page_content="In 'The Dreamwalker's Journey' by Lyra Snow..", metadata={'doc_id': '449281835035545846'})] Use within a chain: .. code-block:: python from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import RunnablePassthrough from langchain_openai import ChatOpenAI prompt = ChatPromptTemplate.from_template( \"\"\"Answer the question based only on the context provided. Context: {context} Question: {question}\"\"\" ) llm = ChatOpenAI(model="gpt-3.5-turbo-0125") def format_docs(docs): return "\\n\\n".join(doc.page_content for doc in docs) chain = ( {"context": retriever | format_docs, "question": RunnablePassthrough()} | prompt | llm | StrOutputParser() ) chain.invoke("What novels has Lila written and what are their contents?") .. code-block:: none "Lila Rose has written 'The Memory Thief,' which follows a charismatic thief..." """ # noqa: E501 embedding_function: Embeddings collection_name: str = "LangChainCollection" collection_properties: Optional[Dict[str, Any]] = None connection_args: Optional[Dict[str, Any]] = None consistency_level: str = "Session" search_params: Optional[dict] = None store: Milvus retriever: BaseRetriever @model_validator(mode="before") @classmethod def create_retriever(cls, values: Dict) -> Any: """Create the Milvus store and retriever.""" values["store"] = Milvus( values["embedding_function"], values["collection_name"], values["collection_properties"], values["connection_args"], values["consistency_level"], ) values["retriever"] = values["store"].as_retriever( search_kwargs={"param": values["search_params"]} ) return values
[docs] def add_texts( self, texts: List[str], metadatas: Optional[List[dict]] = None ) -> None: """Add text to the Milvus store Args: texts (List[str]): The text metadatas (List[dict]): Metadata dicts, must line up with existing store """ self.store.add_texts(texts, metadatas)
def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, **kwargs: Any, ) -> List[Document]: return self.retriever.invoke( query, run_manager=run_manager.get_child(), **kwargs )
[docs] def MilvusRetreiver(*args: Any, **kwargs: Any) -> MilvusRetriever: """Deprecated MilvusRetreiver. Please use MilvusRetriever ('i' before 'e') instead. Args: *args: **kwargs: Returns: MilvusRetriever """ warnings.warn( "MilvusRetreiver will be deprecated in the future. " "Please use MilvusRetriever ('i' before 'e') instead.", DeprecationWarning, ) return MilvusRetriever(*args, **kwargs)