langchain_community.retrievers.milvus ηζΊδ»£η
"""Milvus Retriever"""
import warnings
from typing import Any, Dict, List, Optional
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.retrievers import BaseRetriever
from pydantic import model_validator
from langchain_community.vectorstores.milvus import Milvus
# TODO: Update to MilvusClient + Hybrid Search when available
[docs]
class MilvusRetriever(BaseRetriever):
"""Milvus API retriever.
See detailed instructions here: https://python.langchain.com/docs/integrations/retrievers/milvus_hybrid_search/
Setup:
Install ``langchain-milvus`` and other dependencies:
.. code-block:: bash
pip install -U pymilvus[model] langchain-milvus
Key init args:
collection: Milvus Collection
Instantiate:
.. code-block:: python
retriever = MilvusCollectionHybridSearchRetriever(collection=collection)
Usage:
.. code-block:: python
query = "What are the story about ventures?"
retriever.invoke(query)
.. code-block:: none
[Document(page_content="In 'The Lost Expedition' by Caspian Grey...", metadata={'doc_id': '449281835035545843'}),
Document(page_content="In 'The Phantom Pilgrim' by Rowan Welles...", metadata={'doc_id': '449281835035545845'}),
Document(page_content="In 'The Dreamwalker's Journey' by Lyra Snow..", metadata={'doc_id': '449281835035545846'})]
Use within a chain:
.. code-block:: python
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnablePassthrough
from langchain_openai import ChatOpenAI
prompt = ChatPromptTemplate.from_template(
\"\"\"Answer the question based only on the context provided.
Context: {context}
Question: {question}\"\"\"
)
llm = ChatOpenAI(model="gpt-3.5-turbo-0125")
def format_docs(docs):
return "\\n\\n".join(doc.page_content for doc in docs)
chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
chain.invoke("What novels has Lila written and what are their contents?")
.. code-block:: none
"Lila Rose has written 'The Memory Thief,' which follows a charismatic thief..."
""" # noqa: E501
embedding_function: Embeddings
collection_name: str = "LangChainCollection"
collection_properties: Optional[Dict[str, Any]] = None
connection_args: Optional[Dict[str, Any]] = None
consistency_level: str = "Session"
search_params: Optional[dict] = None
store: Milvus
retriever: BaseRetriever
@model_validator(mode="before")
@classmethod
def create_retriever(cls, values: Dict) -> Any:
"""Create the Milvus store and retriever."""
values["store"] = Milvus(
values["embedding_function"],
values["collection_name"],
values["collection_properties"],
values["connection_args"],
values["consistency_level"],
)
values["retriever"] = values["store"].as_retriever(
search_kwargs={"param": values["search_params"]}
)
return values
[docs]
def add_texts(
self, texts: List[str], metadatas: Optional[List[dict]] = None
) -> None:
"""Add text to the Milvus store
Args:
texts (List[str]): The text
metadatas (List[dict]): Metadata dicts, must line up with existing store
"""
self.store.add_texts(texts, metadatas)
def _get_relevant_documents(
self,
query: str,
*,
run_manager: CallbackManagerForRetrieverRun,
**kwargs: Any,
) -> List[Document]:
return self.retriever.invoke(
query, run_manager=run_manager.get_child(), **kwargs
)
[docs]
def MilvusRetreiver(*args: Any, **kwargs: Any) -> MilvusRetriever:
"""Deprecated MilvusRetreiver. Please use MilvusRetriever ('i' before 'e') instead.
Args:
*args:
**kwargs:
Returns:
MilvusRetriever
"""
warnings.warn(
"MilvusRetreiver will be deprecated in the future. "
"Please use MilvusRetriever ('i' before 'e') instead.",
DeprecationWarning,
)
return MilvusRetriever(*args, **kwargs)