langchain_community.retrievers.nanopq ηš„ζΊδ»£η 

from __future__ import annotations

import concurrent.futures
from typing import Any, Iterable, List, Optional

import numpy as np
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.retrievers import BaseRetriever
from pydantic import ConfigDict


[docs] def create_index(contexts: List[str], embeddings: Embeddings) -> np.ndarray: """ Create an index of embeddings for a list of contexts. Args: contexts: List of contexts to embed. embeddings: Embeddings model to use. Returns: Index of embeddings. """ with concurrent.futures.ThreadPoolExecutor() as executor: return np.array(list(executor.map(embeddings.embed_query, contexts)))
[docs] class NanoPQRetriever(BaseRetriever): """`NanoPQ retriever.""" embeddings: Embeddings """Embeddings model to use.""" index: Any = None """Index of embeddings.""" texts: List[str] """List of texts to index.""" metadatas: Optional[List[dict]] = None """List of metadatas corresponding with each text.""" k: int = 4 """Number of results to return.""" relevancy_threshold: Optional[float] = None """Threshold for relevancy.""" subspace: int = 4 """No of subspaces to be created, should be a multiple of embedding shape""" clusters: int = 128 """No of clusters to be created""" model_config = ConfigDict( arbitrary_types_allowed=True, )
[docs] @classmethod def from_texts( cls, texts: List[str], embeddings: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> NanoPQRetriever: index = create_index(texts, embeddings) return cls( embeddings=embeddings, index=index, texts=texts, metadatas=metadatas, **kwargs, )
[docs] @classmethod def from_documents( cls, documents: Iterable[Document], embeddings: Embeddings, **kwargs: Any, ) -> NanoPQRetriever: texts, metadatas = zip(*((d.page_content, d.metadata) for d in documents)) return cls.from_texts( texts=texts, embeddings=embeddings, metadatas=metadatas, **kwargs )
def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: try: from nanopq import PQ except ImportError: raise ImportError( "Could not import nanopq, please install with `pip install " "nanopq`." ) query_embeds = np.array(self.embeddings.embed_query(query)) try: pq = PQ(M=self.subspace, Ks=self.clusters, verbose=True).fit( self.index.astype("float32") ) except AssertionError: error_message = ( "Received params: training_sample={training_sample}, " "n_cluster={n_clusters}, subspace={subspace}, " "embedding_shape={embedding_shape}. Issue with the combination. " "Please retrace back to find the exact error" ).format( training_sample=self.index.shape[0], n_clusters=self.clusters, subspace=self.subspace, embedding_shape=self.index.shape[1], ) raise RuntimeError(error_message) index_code = pq.encode(vecs=self.index.astype("float32")) dt = pq.dtable(query=query_embeds.astype("float32")) dists = dt.adist(codes=index_code) sorted_ix = np.argsort(dists) top_k_results = [ Document( page_content=self.texts[row], metadata=self.metadatas[row] if self.metadatas else {}, ) for row in sorted_ix[0 : self.k] ] return top_k_results