langchain_community.retrievers.qdrant_sparse_vector_retriever ηš„ζΊδ»£η 

import uuid
from itertools import islice
from typing import (
    Any,
    Callable,
    Dict,
    Generator,
    Iterable,
    List,
    Optional,
    Sequence,
    Tuple,
    cast,
)

from langchain_core._api.deprecation import deprecated
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever
from langchain_core.utils import pre_init
from pydantic import ConfigDict

from langchain_community.vectorstores.qdrant import Qdrant, QdrantException


[docs] @deprecated( since="0.2.16", alternative=( "Qdrant vector store now supports sparse retrievals natively. " "Use langchain_qdrant.QdrantVectorStore#as_retriever() instead. " "Reference: " "https://python.langchain.com/docs/integrations/vectorstores/qdrant/#sparse-vector-search" ), removal="0.5.0", ) class QdrantSparseVectorRetriever(BaseRetriever): """Qdrant sparse vector retriever.""" client: Any = None """'qdrant_client' instance to use.""" collection_name: str """Qdrant collection name.""" sparse_vector_name: str """Name of the sparse vector to use.""" sparse_encoder: Callable[[str], Tuple[List[int], List[float]]] """Sparse encoder function to use.""" k: int = 4 """Number of documents to return per query. Defaults to 4.""" filter: Optional[Any] = None """Qdrant qdrant_client.models.Filter to use for queries. Defaults to None.""" content_payload_key: str = "content" """Payload field containing the document content. Defaults to 'content'""" metadata_payload_key: str = "metadata" """Payload field containing the document metadata. Defaults to 'metadata'.""" search_options: Dict[str, Any] = {} """Additional search options to pass to qdrant_client.QdrantClient.search().""" model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", )
[docs] @pre_init def validate_environment(cls, values: Dict) -> Dict: """Validate that 'qdrant_client' python package exists in environment.""" try: from grpc import RpcError from qdrant_client import QdrantClient, models from qdrant_client.http.exceptions import UnexpectedResponse except ImportError: raise ImportError( "Could not import qdrant-client python package. " "Please install it with `pip install qdrant-client`." ) client = values["client"] if not isinstance(client, QdrantClient): raise ValueError( f"client should be an instance of qdrant_client.QdrantClient, " f"got {type(client)}" ) filter = values["filter"] if filter is not None and not isinstance(filter, models.Filter): raise ValueError( f"filter should be an instance of qdrant_client.models.Filter, " f"got {type(filter)}" ) client = cast(QdrantClient, client) collection_name = values["collection_name"] sparse_vector_name = values["sparse_vector_name"] try: collection_info = client.get_collection(collection_name) sparse_vectors_config = collection_info.config.params.sparse_vectors if sparse_vector_name not in sparse_vectors_config: raise QdrantException( f"Existing Qdrant collection {collection_name} does not " f"contain sparse vector named {sparse_vector_name}." f"Did you mean one of {', '.join(sparse_vectors_config.keys())}?" ) except (UnexpectedResponse, RpcError, ValueError): raise QdrantException( f"Qdrant collection {collection_name} does not exist." ) return values
def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: from qdrant_client import QdrantClient, models client = cast(QdrantClient, self.client) query_indices, query_values = self.sparse_encoder(query) results = client.search( self.collection_name, query_filter=self.filter, query_vector=models.NamedSparseVector( name=self.sparse_vector_name, vector=models.SparseVector( indices=query_indices, values=query_values, ), ), limit=self.k, with_vectors=False, **self.search_options, ) return [ Qdrant._document_from_scored_point( point, self.collection_name, self.content_payload_key, self.metadata_payload_key, ) for point in results ]
[docs] def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]: """Run more documents through the embeddings and add to the vectorstore. Args: documents (List[Document]: Documents to add to the vectorstore. Returns: List[str]: List of IDs of the added texts. """ texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return self.add_texts(texts, metadatas, **kwargs)
[docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[Sequence[str]] = None, batch_size: int = 64, **kwargs: Any, ) -> List[str]: from qdrant_client import QdrantClient added_ids = [] client = cast(QdrantClient, self.client) for batch_ids, points in self._generate_rest_batches( texts, metadatas, ids, batch_size ): client.upsert(self.collection_name, points=points, **kwargs) added_ids.extend(batch_ids) return added_ids
def _generate_rest_batches( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[Sequence[str]] = None, batch_size: int = 64, ) -> Generator[Tuple[List[str], List[Any]], None, None]: from qdrant_client import models as rest texts_iterator = iter(texts) metadatas_iterator = iter(metadatas or []) ids_iterator = iter(ids or [uuid.uuid4().hex for _ in iter(texts)]) while batch_texts := list(islice(texts_iterator, batch_size)): # Take the corresponding metadata and id for each text in a batch batch_metadatas = list(islice(metadatas_iterator, batch_size)) or None batch_ids = list(islice(ids_iterator, batch_size)) # Generate the sparse embeddings for all the texts in a batch batch_embeddings: List[Tuple[List[int], List[float]]] = [ self.sparse_encoder(text) for text in batch_texts ] points = [ rest.PointStruct( id=point_id, vector={ self.sparse_vector_name: rest.SparseVector( indices=sparse_vector[0], values=sparse_vector[1], ) }, payload=payload, ) for point_id, sparse_vector, payload in zip( batch_ids, batch_embeddings, Qdrant._build_payloads( batch_texts, batch_metadatas, self.content_payload_key, self.metadata_payload_key, ), ) ] yield batch_ids, points