langchain_community.retrievers.remote_retriever ηζΊδ»£η
from typing import List, Optional
import aiohttp
import requests
from langchain_core.callbacks import (
AsyncCallbackManagerForRetrieverRun,
CallbackManagerForRetrieverRun,
)
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever
[docs]
class RemoteLangChainRetriever(BaseRetriever):
"""`LangChain API` retriever."""
url: str
"""URL of the remote LangChain API."""
headers: Optional[dict] = None
"""Headers to use for the request."""
input_key: str = "message"
"""Key to use for the input in the request."""
response_key: str = "response"
"""Key to use for the response in the request."""
page_content_key: str = "page_content"
"""Key to use for the page content in the response."""
metadata_key: str = "metadata"
"""Key to use for the metadata in the response."""
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
response = requests.post(
self.url, json={self.input_key: query}, headers=self.headers
)
result = response.json()
return [
Document(
page_content=r[self.page_content_key], metadata=r[self.metadata_key]
)
for r in result[self.response_key]
]
async def _aget_relevant_documents(
self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun
) -> List[Document]:
async with aiohttp.ClientSession() as session:
async with session.request(
"POST", self.url, headers=self.headers, json={self.input_key: query}
) as response:
result = await response.json()
return [
Document(
page_content=r[self.page_content_key], metadata=r[self.metadata_key]
)
for r in result[self.response_key]
]