langchain_community.retrievers.tavily_search_api ηš„ζΊδ»£η 

import os
from enum import Enum
from typing import Any, Dict, List, Optional

from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever


[docs] class SearchDepth(Enum): """Search depth as enumerator.""" BASIC = "basic" ADVANCED = "advanced"
[docs] class TavilySearchAPIRetriever(BaseRetriever): """Tavily Search API retriever. Setup: Install ``langchain-community`` and set environment variable ``TAVILY_API_KEY``. .. code-block:: bash pip install -U langchain-community export TAVILY_API_KEY="your-api-key" Key init args: k: int Number of results to include. include_generated_answer: bool Include a generated answer with results include_raw_content: bool Include raw content with results. include_images: bool Return images in addition to text. Instantiate: .. code-block:: python from langchain_community.retrievers import TavilySearchAPIRetriever retriever = TavilySearchAPIRetriever(k=3) Usage: .. code-block:: python query = "what year was breath of the wild released?" retriever.invoke(query) Use within a chain: .. code-block:: python from langchain_core.output_parsers import StrOutputParser from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import RunnablePassthrough from langchain_openai import ChatOpenAI prompt = ChatPromptTemplate.from_template( \"\"\"Answer the question based only on the context provided. Context: {context} Question: {question}\"\"\" ) llm = ChatOpenAI(model="gpt-3.5-turbo-0125") def format_docs(docs): return "\n\n".join(doc.page_content for doc in docs) chain = ( {"context": retriever | format_docs, "question": RunnablePassthrough()} | prompt | llm | StrOutputParser() ) chain.invoke("how many units did bretch of the wild sell in 2020") """ # noqa: E501 k: int = 10 include_generated_answer: bool = False include_raw_content: bool = False include_images: bool = False search_depth: SearchDepth = SearchDepth.BASIC include_domains: Optional[List[str]] = None exclude_domains: Optional[List[str]] = None kwargs: Optional[Dict[str, Any]] = {} api_key: Optional[str] = None def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun ) -> List[Document]: try: try: from tavily import TavilyClient except ImportError: # Older of tavily used Client from tavily import Client as TavilyClient except ImportError: raise ImportError( "Tavily python package not found. " "Please install it with `pip install tavily-python`." ) tavily = TavilyClient(api_key=self.api_key or os.environ["TAVILY_API_KEY"]) max_results = self.k if not self.include_generated_answer else self.k - 1 response = tavily.search( query=query, max_results=max_results, search_depth=self.search_depth.value, include_answer=self.include_generated_answer, include_domains=self.include_domains, exclude_domains=self.exclude_domains, include_raw_content=self.include_raw_content, include_images=self.include_images, **self.kwargs, ) docs = [ Document( page_content=result.get("content", "") if not self.include_raw_content else result.get("raw_content", ""), metadata={ "title": result.get("title", ""), "source": result.get("url", ""), **{ k: v for k, v in result.items() if k not in ("content", "title", "url", "raw_content") }, "images": response.get("images"), }, ) for result in response.get("results") ] if self.include_generated_answer: docs = [ Document( page_content=response.get("answer", ""), metadata={ "title": "Suggested Answer", "source": "https://tavily.com/", }, ), *docs, ] return docs