langchain_community.retrievers.zep ηš„ζΊδ»£η 

from __future__ import annotations

from enum import Enum
from typing import TYPE_CHECKING, Any, Dict, List, Optional

from langchain_core.callbacks import (
    AsyncCallbackManagerForRetrieverRun,
    CallbackManagerForRetrieverRun,
)
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever
from pydantic import model_validator

if TYPE_CHECKING:
    from zep_python.memory import MemorySearchResult


[docs] class SearchScope(str, Enum): """Which documents to search. Messages or Summaries?""" messages = "messages" """Search chat history messages.""" summary = "summary" """Search chat history summaries."""
[docs] class SearchType(str, Enum): """Enumerator of the types of search to perform.""" similarity = "similarity" """Similarity search.""" mmr = "mmr" """Maximal Marginal Relevance reranking of similarity search."""
[docs] class ZepRetriever(BaseRetriever): """`Zep` MemoryStore Retriever. Search your user's long-term chat history with Zep. Zep offers both simple semantic search and Maximal Marginal Relevance (MMR) reranking of search results. Note: You will need to provide the user's `session_id` to use this retriever. Args: url: URL of your Zep server (required) api_key: Your Zep API key (optional) session_id: Identifies your user or a user's session (required) top_k: Number of documents to return (default: 3, optional) search_type: Type of search to perform (similarity / mmr) (default: similarity, optional) mmr_lambda: Lambda value for MMR search. Defaults to 0.5 (optional) Zep - Fast, scalable building blocks for LLM Apps ========= Zep is an open source platform for productionizing LLM apps. Go from a prototype built in LangChain or LlamaIndex, or a custom app, to production in minutes without rewriting code. For server installation instructions, see: https://docs.getzep.com/deployment/quickstart/ """ zep_client: Optional[Any] = None """Zep client.""" url: str """URL of your Zep server.""" api_key: Optional[str] = None """Your Zep API key.""" session_id: str """Zep session ID.""" top_k: Optional[int] """Number of items to return.""" search_scope: SearchScope = SearchScope.messages """Which documents to search. Messages or Summaries?""" search_type: SearchType = SearchType.similarity """Type of search to perform (similarity / mmr)""" mmr_lambda: Optional[float] = None """Lambda value for MMR search.""" @model_validator(mode="before") @classmethod def create_client(cls, values: dict) -> Any: try: from zep_python import ZepClient except ImportError: raise ImportError( "Could not import zep-python package. " "Please install it with `pip install zep-python`." ) values["zep_client"] = values.get( "zep_client", ZepClient(base_url=values["url"], api_key=values.get("api_key")), ) return values def _messages_search_result_to_doc( self, results: List[MemorySearchResult] ) -> List[Document]: return [ Document( page_content=r.message.pop("content"), metadata={"score": r.dist, **r.message}, ) for r in results if r.message ] def _summary_search_result_to_doc( self, results: List[MemorySearchResult] ) -> List[Document]: return [ Document( page_content=r.summary.content, metadata={ "score": r.dist, "uuid": r.summary.uuid, "created_at": r.summary.created_at, "token_count": r.summary.token_count, }, ) for r in results if r.summary ] def _get_relevant_documents( self, query: str, *, run_manager: CallbackManagerForRetrieverRun, metadata: Optional[Dict[str, Any]] = None, ) -> List[Document]: from zep_python.memory import MemorySearchPayload if not self.zep_client: raise RuntimeError("Zep client not initialized.") payload = MemorySearchPayload( text=query, metadata=metadata, search_scope=self.search_scope, search_type=self.search_type, mmr_lambda=self.mmr_lambda, ) results: List[MemorySearchResult] = self.zep_client.memory.search_memory( self.session_id, payload, limit=self.top_k ) if self.search_scope == SearchScope.summary: return self._summary_search_result_to_doc(results) return self._messages_search_result_to_doc(results) async def _aget_relevant_documents( self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun, metadata: Optional[Dict[str, Any]] = None, ) -> List[Document]: from zep_python.memory import MemorySearchPayload if not self.zep_client: raise RuntimeError("Zep client not initialized.") payload = MemorySearchPayload( text=query, metadata=metadata, search_scope=self.search_scope, search_type=self.search_type, mmr_lambda=self.mmr_lambda, ) results: List[MemorySearchResult] = await self.zep_client.memory.asearch_memory( self.session_id, payload, limit=self.top_k ) if self.search_scope == SearchScope.summary: return self._summary_search_result_to_doc(results) return self._messages_search_result_to_doc(results)