langchain_community.tools.azure_ai_services.document_intelligence ηζΊδ»£η
from __future__ import annotations
import logging
from typing import Any, Dict, List, Optional
from langchain_core.callbacks import CallbackManagerForToolRun
from langchain_core.tools import BaseTool
from langchain_core.utils import get_from_dict_or_env
from pydantic import model_validator
from langchain_community.tools.azure_ai_services.utils import (
detect_file_src_type,
)
logger = logging.getLogger(__name__)
[docs]
class AzureAiServicesDocumentIntelligenceTool(BaseTool): # type: ignore[override]
"""Tool that queries the Azure AI Services Document Intelligence API.
In order to set this up, follow instructions at:
https://learn.microsoft.com/en-us/azure/ai-services/document-intelligence/quickstarts/get-started-sdks-rest-api?view=doc-intel-4.0.0&pivots=programming-language-python
"""
azure_ai_services_key: str = "" #: :meta private:
azure_ai_services_endpoint: str = "" #: :meta private:
doc_analysis_client: Any #: :meta private:
name: str = "azure_ai_services_document_intelligence"
description: str = (
"A wrapper around Azure AI Services Document Intelligence. "
"Useful for when you need to "
"extract text, tables, and key-value pairs from documents. "
"Input should be a url to a document."
)
@model_validator(mode="before")
@classmethod
def validate_environment(cls, values: Dict) -> Any:
"""Validate that api key and endpoint exists in environment."""
azure_ai_services_key = get_from_dict_or_env(
values, "azure_ai_services_key", "AZURE_AI_SERVICES_KEY"
)
azure_ai_services_endpoint = get_from_dict_or_env(
values, "azure_ai_services_endpoint", "AZURE_AI_SERVICES_ENDPOINT"
)
try:
from azure.ai.formrecognizer import DocumentAnalysisClient
from azure.core.credentials import AzureKeyCredential
values["doc_analysis_client"] = DocumentAnalysisClient(
endpoint=azure_ai_services_endpoint,
credential=AzureKeyCredential(azure_ai_services_key),
)
except ImportError:
raise ImportError(
"azure-ai-formrecognizer is not installed. "
"Run `pip install azure-ai-formrecognizer` to install."
)
return values
def _parse_tables(self, tables: List[Any]) -> List[Any]:
result = []
for table in tables:
rc, cc = table.row_count, table.column_count
_table = [["" for _ in range(cc)] for _ in range(rc)]
for cell in table.cells:
_table[cell.row_index][cell.column_index] = cell.content
result.append(_table)
return result
def _parse_kv_pairs(self, kv_pairs: List[Any]) -> List[Any]:
result = []
for kv_pair in kv_pairs:
key = kv_pair.key.content if kv_pair.key else ""
value = kv_pair.value.content if kv_pair.value else ""
result.append((key, value))
return result
def _document_analysis(self, document_path: str) -> Dict:
document_src_type = detect_file_src_type(document_path)
if document_src_type == "local":
with open(document_path, "rb") as document:
poller = self.doc_analysis_client.begin_analyze_document(
"prebuilt-document", document
)
elif document_src_type == "remote":
poller = self.doc_analysis_client.begin_analyze_document_from_url(
"prebuilt-document", document_path
)
else:
raise ValueError(f"Invalid document path: {document_path}")
result = poller.result()
res_dict = {}
if result.content is not None:
res_dict["content"] = result.content
if result.tables is not None:
res_dict["tables"] = self._parse_tables(result.tables)
if result.key_value_pairs is not None:
res_dict["key_value_pairs"] = self._parse_kv_pairs(result.key_value_pairs)
return res_dict
def _format_document_analysis_result(self, document_analysis_result: Dict) -> str:
formatted_result = []
if "content" in document_analysis_result:
formatted_result.append(
f"Content: {document_analysis_result['content']}".replace("\n", " ")
)
if "tables" in document_analysis_result:
for i, table in enumerate(document_analysis_result["tables"]):
formatted_result.append(f"Table {i}: {table}".replace("\n", " "))
if "key_value_pairs" in document_analysis_result:
for kv_pair in document_analysis_result["key_value_pairs"]:
formatted_result.append(
f"{kv_pair[0]}: {kv_pair[1]}".replace("\n", " ")
)
return "\n".join(formatted_result)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
try:
document_analysis_result = self._document_analysis(query)
if not document_analysis_result:
return "No good document analysis result was found"
return self._format_document_analysis_result(document_analysis_result)
except Exception as e:
raise RuntimeError(
f"Error while running AzureAiServicesDocumentIntelligenceTool: {e}"
)