langchain_community.tools.azure_ai_services.document_intelligence ηš„ζΊδ»£η 

from __future__ import annotations

import logging
from typing import Any, Dict, List, Optional

from langchain_core.callbacks import CallbackManagerForToolRun
from langchain_core.tools import BaseTool
from langchain_core.utils import get_from_dict_or_env
from pydantic import model_validator

from langchain_community.tools.azure_ai_services.utils import (
    detect_file_src_type,
)

logger = logging.getLogger(__name__)


[docs] class AzureAiServicesDocumentIntelligenceTool(BaseTool): # type: ignore[override] """Tool that queries the Azure AI Services Document Intelligence API. In order to set this up, follow instructions at: https://learn.microsoft.com/en-us/azure/ai-services/document-intelligence/quickstarts/get-started-sdks-rest-api?view=doc-intel-4.0.0&pivots=programming-language-python """ azure_ai_services_key: str = "" #: :meta private: azure_ai_services_endpoint: str = "" #: :meta private: doc_analysis_client: Any #: :meta private: name: str = "azure_ai_services_document_intelligence" description: str = ( "A wrapper around Azure AI Services Document Intelligence. " "Useful for when you need to " "extract text, tables, and key-value pairs from documents. " "Input should be a url to a document." ) @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: """Validate that api key and endpoint exists in environment.""" azure_ai_services_key = get_from_dict_or_env( values, "azure_ai_services_key", "AZURE_AI_SERVICES_KEY" ) azure_ai_services_endpoint = get_from_dict_or_env( values, "azure_ai_services_endpoint", "AZURE_AI_SERVICES_ENDPOINT" ) try: from azure.ai.formrecognizer import DocumentAnalysisClient from azure.core.credentials import AzureKeyCredential values["doc_analysis_client"] = DocumentAnalysisClient( endpoint=azure_ai_services_endpoint, credential=AzureKeyCredential(azure_ai_services_key), ) except ImportError: raise ImportError( "azure-ai-formrecognizer is not installed. " "Run `pip install azure-ai-formrecognizer` to install." ) return values def _parse_tables(self, tables: List[Any]) -> List[Any]: result = [] for table in tables: rc, cc = table.row_count, table.column_count _table = [["" for _ in range(cc)] for _ in range(rc)] for cell in table.cells: _table[cell.row_index][cell.column_index] = cell.content result.append(_table) return result def _parse_kv_pairs(self, kv_pairs: List[Any]) -> List[Any]: result = [] for kv_pair in kv_pairs: key = kv_pair.key.content if kv_pair.key else "" value = kv_pair.value.content if kv_pair.value else "" result.append((key, value)) return result def _document_analysis(self, document_path: str) -> Dict: document_src_type = detect_file_src_type(document_path) if document_src_type == "local": with open(document_path, "rb") as document: poller = self.doc_analysis_client.begin_analyze_document( "prebuilt-document", document ) elif document_src_type == "remote": poller = self.doc_analysis_client.begin_analyze_document_from_url( "prebuilt-document", document_path ) else: raise ValueError(f"Invalid document path: {document_path}") result = poller.result() res_dict = {} if result.content is not None: res_dict["content"] = result.content if result.tables is not None: res_dict["tables"] = self._parse_tables(result.tables) if result.key_value_pairs is not None: res_dict["key_value_pairs"] = self._parse_kv_pairs(result.key_value_pairs) return res_dict def _format_document_analysis_result(self, document_analysis_result: Dict) -> str: formatted_result = [] if "content" in document_analysis_result: formatted_result.append( f"Content: {document_analysis_result['content']}".replace("\n", " ") ) if "tables" in document_analysis_result: for i, table in enumerate(document_analysis_result["tables"]): formatted_result.append(f"Table {i}: {table}".replace("\n", " ")) if "key_value_pairs" in document_analysis_result: for kv_pair in document_analysis_result["key_value_pairs"]: formatted_result.append( f"{kv_pair[0]}: {kv_pair[1]}".replace("\n", " ") ) return "\n".join(formatted_result) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" try: document_analysis_result = self._document_analysis(query) if not document_analysis_result: return "No good document analysis result was found" return self._format_document_analysis_result(document_analysis_result) except Exception as e: raise RuntimeError( f"Error while running AzureAiServicesDocumentIntelligenceTool: {e}" )