langchain_community.tools.databricks.tool ηš„ζΊδ»£η 

import json
from datetime import date, datetime
from decimal import Decimal
from hashlib import md5
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Type, Union

from langchain_core.tools import BaseTool, StructuredTool
from langchain_core.tools.base import BaseToolkit
from pydantic import BaseModel, Field, create_model
from typing_extensions import Self

if TYPE_CHECKING:
    from databricks.sdk.service.catalog import FunctionInfo

from pydantic import ConfigDict

from langchain_community.tools.databricks._execution import execute_function


def _uc_type_to_pydantic_type(uc_type_json: Union[str, Dict[str, Any]]) -> Type:
    mapping = {
        "long": int,
        "binary": bytes,
        "boolean": bool,
        "date": date,
        "double": float,
        "float": float,
        "integer": int,
        "short": int,
        "string": str,
        "timestamp": datetime,
        "timestamp_ntz": datetime,
        "byte": int,
    }
    if isinstance(uc_type_json, str):
        if uc_type_json in mapping:
            return mapping[uc_type_json]
        else:
            if uc_type_json.startswith("decimal"):
                return Decimal
            elif uc_type_json == "void" or uc_type_json.startswith("interval"):
                raise TypeError(f"Type {uc_type_json} is not supported.")
            else:
                raise TypeError(
                    f"Unknown type {uc_type_json}. Try upgrading this package."
                )
    else:
        assert isinstance(uc_type_json, dict)
        tpe = uc_type_json["type"]
        if tpe == "array":
            element_type = _uc_type_to_pydantic_type(uc_type_json["elementType"])
            if uc_type_json["containsNull"]:
                element_type = Optional[element_type]  # type: ignore
            return List[element_type]  # type: ignore
        elif tpe == "map":
            key_type = uc_type_json["keyType"]
            assert key_type == "string", TypeError(
                f"Only support STRING key type for MAP but got {key_type}."
            )
            value_type = _uc_type_to_pydantic_type(uc_type_json["valueType"])
            if uc_type_json["valueContainsNull"]:
                value_type: Type = Optional[value_type]  # type: ignore
            return Dict[str, value_type]  # type: ignore
        elif tpe == "struct":
            fields = {}
            for field in uc_type_json["fields"]:
                field_type = _uc_type_to_pydantic_type(field["type"])
                if field.get("nullable"):
                    field_type = Optional[field_type]  # type: ignore
                comment = (
                    uc_type_json["metadata"].get("comment")
                    if "metadata" in uc_type_json
                    else None
                )
                fields[field["name"]] = (field_type, Field(..., description=comment))
            uc_type_json_str = json.dumps(uc_type_json, sort_keys=True)
            type_hash = md5(uc_type_json_str.encode()).hexdigest()[:8]
            return create_model(f"Struct_{type_hash}", **fields)  # type: ignore
        else:
            raise TypeError(f"Unknown type {uc_type_json}. Try upgrading this package.")


def _generate_args_schema(function: "FunctionInfo") -> Type[BaseModel]:
    if function.input_params is None:
        return BaseModel
    params = function.input_params.parameters
    assert params is not None
    fields = {}
    for p in params:
        assert p.type_json is not None
        type_json = json.loads(p.type_json)["type"]
        pydantic_type = _uc_type_to_pydantic_type(type_json)
        description = p.comment
        default: Any = ...
        if p.parameter_default:
            pydantic_type = Optional[pydantic_type]  # type: ignore
            default = None
            # TODO: Convert default value string to the correct type.
            # We might need to use statement execution API
            # to get the JSON representation of the value.
            default_description = f"(Default: {p.parameter_default})"
            if description:
                description += f" {default_description}"
            else:
                description = default_description
        fields[p.name] = (
            pydantic_type,
            Field(default=default, description=description),
        )
    return create_model(
        f"{function.catalog_name}__{function.schema_name}__{function.name}__params",
        **fields,  # type: ignore
    )


def _get_tool_name(function: "FunctionInfo") -> str:
    tool_name = f"{function.catalog_name}__{function.schema_name}__{function.name}"[
        -64:
    ]
    return tool_name


def _get_default_workspace_client() -> Any:
    try:
        from databricks.sdk import WorkspaceClient
    except ImportError as e:
        raise ImportError(
            "Could not import databricks-sdk python package. "
            "Please install it with `pip install databricks-sdk`."
        ) from e
    return WorkspaceClient()


[docs] class UCFunctionToolkit(BaseToolkit): warehouse_id: str = Field( description="The ID of a Databricks SQL Warehouse to execute functions." ) workspace_client: Any = Field( default_factory=_get_default_workspace_client, description="Databricks workspace client.", ) tools: Dict[str, BaseTool] = Field(default_factory=dict) model_config = ConfigDict( arbitrary_types_allowed=True, )
[docs] def include(self, *function_names: str, **kwargs: Any) -> Self: """ Includes UC functions to the toolkit. Args: functions: A list of UC function names in the format "catalog_name.schema_name.function_name" or "catalog_name.schema_name.*". If the function name ends with ".*", all functions in the schema will be added. kwargs: Extra arguments to pass to StructuredTool, e.g., `return_direct`. """ for name in function_names: if name.endswith(".*"): catalog_name, schema_name = name[:-2].split(".") # TODO: handle pagination, warn and truncate if too many functions = self.workspace_client.functions.list( catalog_name=catalog_name, schema_name=schema_name ) for f in functions: assert f.full_name is not None self.include(f.full_name, **kwargs) else: if name not in self.tools: self.tools[name] = self._make_tool(name, **kwargs) return self
def _make_tool(self, function_name: str, **kwargs: Any) -> BaseTool: function = self.workspace_client.functions.get(function_name) name = _get_tool_name(function) description = function.comment or "" args_schema = _generate_args_schema(function) def func(*args: Any, **kwargs: Any) -> str: # TODO: We expect all named args and ignore args. # Non-empty args show up when the function has no parameters. args_json = json.loads(json.dumps(kwargs, default=str)) result = execute_function( ws=self.workspace_client, warehouse_id=self.warehouse_id, function=function, parameters=args_json, ) return result.to_json() return StructuredTool( name=name, description=description, args_schema=args_schema, func=func, **kwargs, )
[docs] def get_tools(self) -> List[BaseTool]: return list(self.tools.values())