langchain_community.tools.edenai.image_explicitcontent ηζΊδ»£η
from __future__ import annotations
import logging
from typing import Optional, Type
from langchain_core.callbacks import CallbackManagerForToolRun
from pydantic import BaseModel, Field, HttpUrl
from langchain_community.tools.edenai.edenai_base_tool import EdenaiTool
logger = logging.getLogger(__name__)
[docs]
class ExplicitImageInput(BaseModel):
query: HttpUrl = Field(description="url of the image to analyze")
[docs]
class EdenAiExplicitImageTool(EdenaiTool): # type: ignore[override, override, override]
"""Tool that queries the Eden AI Explicit image detection.
for api reference check edenai documentation:
https://docs.edenai.co/reference/image_explicit_content_create.
To use, you should have
the environment variable ``EDENAI_API_KEY`` set with your API token.
You can find your token here: https://app.edenai.run/admin/account/settings
"""
name: str = "edenai_image_explicit_content_detection"
description: str = (
"A wrapper around edenai Services Explicit image detection. "
"""Useful for when you have to extract Explicit Content from images.
it detects adult only content in images,
that is generally inappropriate for people under
the age of 18 and includes nudity, sexual activity,
pornography, violence, gore content, etc."""
"Input should be the string url of the image ."
)
args_schema: Type[BaseModel] = ExplicitImageInput
combine_available: bool = True
feature: str = "image"
subfeature: str = "explicit_content"
def _parse_json(self, json_data: dict) -> str:
result_str = f"nsfw_likelihood: {json_data['nsfw_likelihood']}\n"
for idx, found_obj in enumerate(json_data["items"]):
label = found_obj["label"].lower()
likelihood = found_obj["likelihood"]
result_str += f"{idx}: {label} likelihood {likelihood},\n"
return result_str[:-2]
def _parse_response(self, json_data: list) -> str:
if len(json_data) == 1:
result = self._parse_json(json_data[0])
else:
for entry in json_data:
if entry.get("provider") == "eden-ai":
result = self._parse_json(entry)
return result
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
query_params = {"file_url": query, "attributes_as_list": False}
return self._call_eden_ai(query_params)