langchain_community.tools.edenai.image_objectdetection ηζΊδ»£η
from __future__ import annotations
import logging
from typing import Optional, Type
from langchain_core.callbacks import CallbackManagerForToolRun
from pydantic import BaseModel, Field, HttpUrl
from langchain_community.tools.edenai.edenai_base_tool import EdenaiTool
logger = logging.getLogger(__name__)
[docs]
class ObjectDetectionInput(BaseModel):
query: HttpUrl = Field(description="url of the image to analyze")
[docs]
class EdenAiObjectDetectionTool(EdenaiTool): # type: ignore[override, override, override]
"""Tool that queries the Eden AI Object detection API.
for api reference check edenai documentation:
https://docs.edenai.co/reference/image_object_detection_create.
To use, you should have
the environment variable ``EDENAI_API_KEY`` set with your API token.
You can find your token here: https://app.edenai.run/admin/account/settings
"""
name: str = "edenai_object_detection"
description: str = (
"A wrapper around edenai Services Object Detection . "
"""Useful for when you have to do an to identify and locate
(with bounding boxes) objects in an image """
"Input should be the string url of the image to identify."
)
args_schema: Type[BaseModel] = ObjectDetectionInput
show_positions: bool = False
feature: str = "image"
subfeature: str = "object_detection"
def _parse_json(self, json_data: dict) -> str:
result = []
label_info = []
for found_obj in json_data["items"]:
label_str = f"{found_obj['label']} - Confidence {found_obj['confidence']}"
x_min = found_obj.get("x_min")
x_max = found_obj.get("x_max")
y_min = found_obj.get("y_min")
y_max = found_obj.get("y_max")
if self.show_positions and all(
[x_min, x_max, y_min, y_max]
): # some providers don't return positions
label_str += f""",at the position x_min: {x_min}, x_max: {x_max},
y_min: {y_min}, y_max: {y_max}"""
label_info.append(label_str)
result.append("\n".join(label_info))
return "\n\n".join(result)
def _parse_response(self, response: list) -> str:
if len(response) == 1:
result = self._parse_json(response[0])
else:
for entry in response:
if entry.get("provider") == "eden-ai":
result = self._parse_json(entry)
return result
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
query_params = {"file_url": query, "attributes_as_list": False}
return self._call_eden_ai(query_params)