langchain_community.tools.edenai.text_moderation ηζΊδ»£η
from __future__ import annotations
import logging
from typing import Optional, Type
from langchain_core.callbacks import CallbackManagerForToolRun
from pydantic import BaseModel, Field
from langchain_community.tools.edenai.edenai_base_tool import EdenaiTool
logger = logging.getLogger(__name__)
[docs]
class TextModerationInput(BaseModel):
query: str = Field(description="Text to moderate")
[docs]
class EdenAiTextModerationTool(EdenaiTool): # type: ignore[override, override, override]
"""Tool that queries the Eden AI Explicit text detection.
for api reference check edenai documentation:
https://docs.edenai.co/reference/image_explicit_content_create.
To use, you should have
the environment variable ``EDENAI_API_KEY`` set with your API token.
You can find your token here: https://app.edenai.run/admin/account/settings
"""
name: str = "edenai_explicit_content_detection_text"
description: str = (
"A wrapper around edenai Services explicit content detection for text. "
"""Useful for when you have to scan text for offensive,
sexually explicit or suggestive content,
it checks also if there is any content of self-harm,
violence, racist or hate speech."""
"""the structure of the output is :
'the type of the explicit content : the likelihood of it being explicit'
the likelihood is a number
between 1 and 5, 1 being the lowest and 5 the highest.
something is explicit if the likelihood is equal or higher than 3.
for example :
nsfw_likelihood: 1
this is not explicit.
for example :
nsfw_likelihood: 3
this is explicit.
"""
"Input should be a string."
)
args_schema: Type[BaseModel] = TextModerationInput
language: str
feature: str = "text"
subfeature: str = "moderation"
def _parse_response(self, response: list) -> str:
formatted_result = []
for result in response:
if "nsfw_likelihood" in result.keys():
formatted_result.append(
"nsfw_likelihood: " + str(result["nsfw_likelihood"])
)
for label, likelihood in zip(result["label"], result["likelihood"]):
formatted_result.append(f'"{label}": {str(likelihood)}')
return "\n".join(formatted_result)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
query_params = {"text": query, "language": self.language}
return self._call_eden_ai(query_params)