langchain_community.tools.plugin ηš„ζΊδ»£η 

from __future__ import annotations

import json
from typing import Optional, Type

import requests
import yaml
from langchain_core.callbacks import (
    AsyncCallbackManagerForToolRun,
    CallbackManagerForToolRun,
)
from langchain_core.tools import BaseTool
from pydantic import BaseModel


[docs] class ApiConfig(BaseModel): """API Configuration.""" type: str url: str has_user_authentication: Optional[bool] = False
[docs] class AIPlugin(BaseModel): """AI Plugin Definition.""" schema_version: str name_for_model: str name_for_human: str description_for_model: str description_for_human: str auth: Optional[dict] = None api: ApiConfig logo_url: Optional[str] contact_email: Optional[str] legal_info_url: Optional[str]
[docs] @classmethod def from_url(cls, url: str) -> AIPlugin: """Instantiate AIPlugin from a URL.""" response = requests.get(url).json() return cls(**response)
[docs] def marshal_spec(txt: str) -> dict: """Convert the yaml or json serialized spec to a dict. Args: txt: The yaml or json serialized spec. Returns: dict: The spec as a dict. """ try: return json.loads(txt) except json.JSONDecodeError: return yaml.safe_load(txt)
[docs] class AIPluginToolSchema(BaseModel): """Schema for AIPluginTool.""" tool_input: Optional[str] = ""
[docs] class AIPluginTool(BaseTool): # type: ignore[override, override] """Tool for getting the OpenAPI spec for an AI Plugin.""" plugin: AIPlugin api_spec: str args_schema: Type[AIPluginToolSchema] = AIPluginToolSchema
[docs] @classmethod def from_plugin_url(cls, url: str) -> AIPluginTool: plugin = AIPlugin.from_url(url) description = ( f"Call this tool to get the OpenAPI spec (and usage guide) " f"for interacting with the {plugin.name_for_human} API. " f"You should only call this ONCE! What is the " f"{plugin.name_for_human} API useful for? " ) + plugin.description_for_human open_api_spec_str = requests.get(plugin.api.url).text open_api_spec = marshal_spec(open_api_spec_str) api_spec = ( f"Usage Guide: {plugin.description_for_model}\n\n" f"OpenAPI Spec: {open_api_spec}" ) return cls( name=plugin.name_for_model, description=description, plugin=plugin, api_spec=api_spec, )
def _run( self, tool_input: Optional[str] = "", run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return self.api_spec async def _arun( self, tool_input: Optional[str] = None, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" return self.api_spec