langchain_community.tools.searx_search.tool ηš„ζΊδ»£η 

"""Tool for the SearxNG search API."""

from typing import Optional, Type

from langchain_core.callbacks import (
    AsyncCallbackManagerForToolRun,
    CallbackManagerForToolRun,
)
from langchain_core.tools import BaseTool
from pydantic import BaseModel, ConfigDict, Field

from langchain_community.utilities.searx_search import SearxSearchWrapper


[docs] class SearxSearchQueryInput(BaseModel): """Input for the SearxSearch tool.""" query: str = Field(description="query to look up on searx")
[docs] class SearxSearchRun(BaseTool): # type: ignore[override, override] """Tool that queries a Searx instance.""" name: str = "searx_search" description: str = ( "A meta search engine." "Useful for when you need to answer questions about current events." "Input should be a search query." ) wrapper: SearxSearchWrapper kwargs: dict = Field(default_factory=dict) args_schema: Type[BaseModel] = SearxSearchQueryInput def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return self.wrapper.run(query, **self.kwargs) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" return await self.wrapper.arun(query, **self.kwargs)
[docs] class SearxSearchResults(BaseTool): # type: ignore[override, override] """Tool that queries a Searx instance and gets back json.""" name: str = "searx_search_results" description: str = ( "A meta search engine." "Useful for when you need to answer questions about current events." "Input should be a search query. Output is a JSON array of the query results" ) wrapper: SearxSearchWrapper num_results: int = 4 kwargs: dict = Field(default_factory=dict) args_schema: Type[BaseModel] = SearxSearchQueryInput model_config = ConfigDict( extra="allow", ) def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" return str(self.wrapper.results(query, self.num_results, **self.kwargs)) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" return ( await self.wrapper.aresults(query, self.num_results, **self.kwargs) ).__str__()