langchain_community.tools.vectorstore.tool ηζΊδ»£η
"""Tools for interacting with vectorstores."""
import json
from typing import Any, Dict, Optional
from langchain_core.callbacks import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain_core.language_models import BaseLanguageModel
from langchain_core.tools import BaseTool
from langchain_core.vectorstores import VectorStore
from pydantic import BaseModel, ConfigDict, Field
from langchain_community.llms.openai import OpenAI
[docs]
class BaseVectorStoreTool(BaseModel):
"""Base class for tools that use a VectorStore."""
vectorstore: VectorStore = Field(exclude=True)
llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0))
model_config = ConfigDict(
arbitrary_types_allowed=True,
)
def _create_description_from_template(values: Dict[str, Any]) -> Dict[str, Any]:
values["description"] = values["template"].format(name=values["name"])
return values
[docs]
class VectorStoreQATool(BaseVectorStoreTool, BaseTool): # type: ignore[override]
"""Tool for the VectorDBQA chain. To be initialized with name and chain."""
[docs]
@staticmethod
def get_description(name: str, description: str) -> str:
template: str = (
"Useful for when you need to answer questions about {name}. "
"Whenever you need information about {description} "
"you should ALWAYS use this. "
"Input should be a fully formed question."
)
return template.format(name=name, description=description)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
from langchain.chains.retrieval_qa.base import RetrievalQA
chain = RetrievalQA.from_chain_type(
self.llm, retriever=self.vectorstore.as_retriever()
)
return chain.invoke(
{chain.input_key: query},
config={"callbacks": run_manager.get_child() if run_manager else None},
)[chain.output_key]
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
from langchain.chains.retrieval_qa.base import RetrievalQA
chain = RetrievalQA.from_chain_type(
self.llm, retriever=self.vectorstore.as_retriever()
)
return (
await chain.ainvoke(
{chain.input_key: query},
config={"callbacks": run_manager.get_child() if run_manager else None},
)
)[chain.output_key]
[docs]
class VectorStoreQAWithSourcesTool(BaseVectorStoreTool, BaseTool): # type: ignore[override]
"""Tool for the VectorDBQAWithSources chain."""
[docs]
@staticmethod
def get_description(name: str, description: str) -> str:
template: str = (
"Useful for when you need to answer questions about {name} and the sources "
"used to construct the answer. "
"Whenever you need information about {description} "
"you should ALWAYS use this. "
" Input should be a fully formed question. "
"Output is a json serialized dictionary with keys `answer` and `sources`. "
"Only use this tool if the user explicitly asks for sources."
)
return template.format(name=name, description=description)
def _run(
self,
query: str,
run_manager: Optional[CallbackManagerForToolRun] = None,
) -> str:
"""Use the tool."""
from langchain.chains.qa_with_sources.retrieval import (
RetrievalQAWithSourcesChain,
)
chain = RetrievalQAWithSourcesChain.from_chain_type(
self.llm, retriever=self.vectorstore.as_retriever()
)
return json.dumps(
chain.invoke(
{chain.question_key: query},
return_only_outputs=True,
config={"callbacks": run_manager.get_child() if run_manager else None},
)
)
async def _arun(
self,
query: str,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
from langchain.chains.qa_with_sources.retrieval import (
RetrievalQAWithSourcesChain,
)
chain = RetrievalQAWithSourcesChain.from_chain_type(
self.llm, retriever=self.vectorstore.as_retriever()
)
return json.dumps(
await chain.ainvoke(
{chain.question_key: query},
return_only_outputs=True,
config={"callbacks": run_manager.get_child() if run_manager else None},
)
)