langchain_community.tools.vectorstore.tool ηš„ζΊδ»£η 

"""Tools for interacting with vectorstores."""

import json
from typing import Any, Dict, Optional

from langchain_core.callbacks import (
    AsyncCallbackManagerForToolRun,
    CallbackManagerForToolRun,
)
from langchain_core.language_models import BaseLanguageModel
from langchain_core.tools import BaseTool
from langchain_core.vectorstores import VectorStore
from pydantic import BaseModel, ConfigDict, Field

from langchain_community.llms.openai import OpenAI


[docs] class BaseVectorStoreTool(BaseModel): """Base class for tools that use a VectorStore.""" vectorstore: VectorStore = Field(exclude=True) llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0)) model_config = ConfigDict( arbitrary_types_allowed=True, )
def _create_description_from_template(values: Dict[str, Any]) -> Dict[str, Any]: values["description"] = values["template"].format(name=values["name"]) return values
[docs] class VectorStoreQATool(BaseVectorStoreTool, BaseTool): # type: ignore[override] """Tool for the VectorDBQA chain. To be initialized with name and chain."""
[docs] @staticmethod def get_description(name: str, description: str) -> str: template: str = ( "Useful for when you need to answer questions about {name}. " "Whenever you need information about {description} " "you should ALWAYS use this. " "Input should be a fully formed question." ) return template.format(name=name, description=description)
def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" from langchain.chains.retrieval_qa.base import RetrievalQA chain = RetrievalQA.from_chain_type( self.llm, retriever=self.vectorstore.as_retriever() ) return chain.invoke( {chain.input_key: query}, config={"callbacks": run_manager.get_child() if run_manager else None}, )[chain.output_key] async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" from langchain.chains.retrieval_qa.base import RetrievalQA chain = RetrievalQA.from_chain_type( self.llm, retriever=self.vectorstore.as_retriever() ) return ( await chain.ainvoke( {chain.input_key: query}, config={"callbacks": run_manager.get_child() if run_manager else None}, ) )[chain.output_key]
[docs] class VectorStoreQAWithSourcesTool(BaseVectorStoreTool, BaseTool): # type: ignore[override] """Tool for the VectorDBQAWithSources chain."""
[docs] @staticmethod def get_description(name: str, description: str) -> str: template: str = ( "Useful for when you need to answer questions about {name} and the sources " "used to construct the answer. " "Whenever you need information about {description} " "you should ALWAYS use this. " " Input should be a fully formed question. " "Output is a json serialized dictionary with keys `answer` and `sources`. " "Only use this tool if the user explicitly asks for sources." ) return template.format(name=name, description=description)
def _run( self, query: str, run_manager: Optional[CallbackManagerForToolRun] = None, ) -> str: """Use the tool.""" from langchain.chains.qa_with_sources.retrieval import ( RetrievalQAWithSourcesChain, ) chain = RetrievalQAWithSourcesChain.from_chain_type( self.llm, retriever=self.vectorstore.as_retriever() ) return json.dumps( chain.invoke( {chain.question_key: query}, return_only_outputs=True, config={"callbacks": run_manager.get_child() if run_manager else None}, ) ) async def _arun( self, query: str, run_manager: Optional[AsyncCallbackManagerForToolRun] = None, ) -> str: """Use the tool asynchronously.""" from langchain.chains.qa_with_sources.retrieval import ( RetrievalQAWithSourcesChain, ) chain = RetrievalQAWithSourcesChain.from_chain_type( self.llm, retriever=self.vectorstore.as_retriever() ) return json.dumps( await chain.ainvoke( {chain.question_key: query}, return_only_outputs=True, config={"callbacks": run_manager.get_child() if run_manager else None}, ) )