langchain_community.tools.zenguard.tool ηζΊδ»£η
import os
from enum import Enum
from typing import Any, Dict, List, Optional, Type
import requests
from langchain_core.tools import BaseTool
from pydantic import BaseModel, Field, ValidationError, validator
[docs]
class Detector(str, Enum):
ALLOWED_TOPICS = "allowed_subjects"
BANNED_TOPICS = "banned_subjects"
PROMPT_INJECTION = "prompt_injection"
KEYWORDS = "keywords"
PII = "pii"
SECRETS = "secrets"
TOXICITY = "toxicity"
[docs]
class DetectorAPI(str, Enum):
ALLOWED_TOPICS = "v1/detect/topics/allowed"
BANNED_TOPICS = "v1/detect/topics/banned"
PROMPT_INJECTION = "v1/detect/prompt_injection"
KEYWORDS = "v1/detect/keywords"
PII = "v1/detect/pii"
SECRETS = "v1/detect/secrets"
TOXICITY = "v1/detect/toxicity"
[docs]
class ZenGuardInput(BaseModel):
prompts: List[str] = Field(
...,
min_length=1,
description="Prompt to check",
)
detectors: List[Detector] = Field(
...,
min_length=1,
description="List of detectors by which you want to check the prompt",
)
in_parallel: bool = Field(
default=True,
description="Run prompt detection by the detector in parallel or sequentially",
)
[docs]
class ZenGuardTool(BaseTool): # type: ignore[override, override]
name: str = "ZenGuard"
description: str = (
"ZenGuard AI integration package. ZenGuard AI - the fastest GenAI guardrails."
)
args_schema: Type[BaseModel] = ZenGuardInput
return_direct: bool = True
zenguard_api_key: Optional[str] = Field(default=None)
_ZENGUARD_API_URL_ROOT: str = "https://api.zenguard.ai/"
_ZENGUARD_API_KEY_ENV_NAME: str = "ZENGUARD_API_KEY"
[docs]
@validator("zenguard_api_key", pre=True, always=True, check_fields=False)
def set_api_key(cls, v: str) -> str:
if v is None:
v = os.getenv(cls._ZENGUARD_API_KEY_ENV_NAME)
if v is None:
raise ValidationError(
"The zenguard_api_key tool option must be set either "
"by passing zenguard_api_key to the tool or by setting "
f"the f{cls._ZENGUARD_API_KEY_ENV_NAME} environment variable"
)
return v
@property
def _api_key(self) -> str:
if self.zenguard_api_key is None:
raise ValueError(
"API key is required for the ZenGuardTool. "
"Please provide the API key by either:\n"
"1. Manually specifying it when initializing the tool: "
"ZenGuardTool(zenguard_api_key='your_api_key')\n"
"2. Setting it as an environment variable:"
f" {self._ZENGUARD_API_KEY_ENV_NAME}"
)
return self.zenguard_api_key
def _run(
self,
prompts: List[str],
detectors: List[Detector],
in_parallel: bool = True,
) -> Dict[str, Any]:
try:
postfix = None
json: Optional[Dict[str, Any]] = None
if len(detectors) == 1:
postfix = self._convert_detector_to_api(detectors[0])
json = {"messages": prompts}
else:
postfix = "v1/detect"
json = {
"messages": prompts,
"in_parallel": in_parallel,
"detectors": detectors,
}
response = requests.post(
self._ZENGUARD_API_URL_ROOT + postfix,
json=json,
headers={"x-api-key": self._api_key},
timeout=5,
)
response.raise_for_status()
return response.json()
except (requests.HTTPError, requests.Timeout) as e:
return {"error": str(e)}
def _convert_detector_to_api(self, detector: Detector) -> str:
return DetectorAPI[detector.name].value