langchain_community.utilities.awslambda ηζΊδ»£η
"""Util that calls Lambda."""
import json
from typing import Any, Dict, Optional
from pydantic import BaseModel, ConfigDict, model_validator
[docs]
class LambdaWrapper(BaseModel):
"""Wrapper for AWS Lambda SDK.
To use, you should have the ``boto3`` package installed
and a lambda functions built from the AWS Console or
CLI. Set up your AWS credentials with ``aws configure``
Example:
.. code-block:: bash
pip install boto3
aws configure
"""
lambda_client: Any = None #: :meta private:
"""The configured boto3 client"""
function_name: Optional[str] = None
"""The name of your lambda function"""
awslambda_tool_name: Optional[str] = None
"""If passing to an agent as a tool, the tool name"""
awslambda_tool_description: Optional[str] = None
"""If passing to an agent as a tool, the description"""
model_config = ConfigDict(
extra="forbid",
)
@model_validator(mode="before")
@classmethod
def validate_environment(cls, values: Dict) -> Any:
"""Validate that python package exists in environment."""
try:
import boto3
except ImportError:
raise ImportError(
"boto3 is not installed. Please install it with `pip install boto3`"
)
values["lambda_client"] = boto3.client("lambda")
return values
[docs]
def run(self, query: str) -> str:
"""
Invokes the lambda function and returns the
result.
Args:
query: an input to passed to the lambda
function as the ``body`` of a JSON
object.
"""
res = self.lambda_client.invoke(
FunctionName=self.function_name,
InvocationType="RequestResponse",
Payload=json.dumps({"body": query}),
)
try:
payload_stream = res["Payload"]
payload_string = payload_stream.read().decode("utf-8")
answer = json.loads(payload_string)["body"]
except StopIteration:
return "Failed to parse response from Lambda"
if answer is None or answer == "":
# We don't want to return the assumption alone if answer is empty
return "Request failed."
else:
return f"Result: {answer}"