langchain_community.utilities.dria_index ηš„ζΊδ»£η 

import logging
from typing import Any, Dict, List, Optional, Union

logger = logging.getLogger(__name__)


[docs] class DriaAPIWrapper: """Wrapper around Dria API. This wrapper facilitates interactions with Dria's vector search and retrieval services, including creating knowledge bases, inserting data, and fetching search results. Attributes: api_key: Your API key for accessing Dria. contract_id: The contract ID of the knowledge base to interact with. top_n: Number of top results to fetch for a search. """
[docs] def __init__( self, api_key: str, contract_id: Optional[str] = None, top_n: int = 10 ): try: from dria import Dria, Models except ImportError: logger.error( """Dria is not installed. Please install Dria to use this wrapper. You can install Dria using the following command: pip install dria """ ) return self.api_key = api_key self.models = Models self.contract_id = contract_id self.top_n = top_n self.dria_client = Dria(api_key=self.api_key) if self.contract_id: self.dria_client.set_contract(self.contract_id)
[docs] def create_knowledge_base( self, name: str, description: str, category: str, embedding: str, ) -> str: """Create a new knowledge base.""" contract_id = self.dria_client.create( name=name, embedding=embedding, category=category, description=description ) logger.info(f"Knowledge base created with ID: {contract_id}") self.contract_id = contract_id return contract_id
[docs] def insert_data(self, data: List[Dict[str, Any]]) -> str: """Insert data into the knowledge base.""" response = self.dria_client.insert_text(data) logger.info(f"Data inserted: {response}") return response
[docs] def search(self, query: str) -> List[Dict[str, Any]]: """Perform a text-based search.""" results = self.dria_client.search(query, top_n=self.top_n) logger.info(f"Search results: {results}") return results
[docs] def query_with_vector(self, vector: List[float]) -> List[Dict[str, Any]]: """Perform a vector-based query.""" vector_query_results = self.dria_client.query(vector, top_n=self.top_n) logger.info(f"Vector query results: {vector_query_results}") return vector_query_results
[docs] def run(self, query: Union[str, List[float]]) -> Optional[List[Dict[str, Any]]]: """Method to handle both text-based searches and vector-based queries. Args: query: A string for text-based search or a list of floats for vector-based query. Returns: The search or query results from Dria. """ if isinstance(query, str): return self.search(query) elif isinstance(query, list) and all(isinstance(item, float) for item in query): return self.query_with_vector(query) else: logger.error( """Invalid query type. Please provide a string for text search or a list of floats for vector query.""" ) return None