langchain_community.utilities.google_lens ηš„ζΊδ»£η 

"""Util that calls Google Lens Search."""

from typing import Any, Dict, Optional, cast

import requests
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
from pydantic import BaseModel, ConfigDict, SecretStr, model_validator


[docs] class GoogleLensAPIWrapper(BaseModel): """Wrapper for SerpApi's Google Lens API You can create SerpApi.com key by signing up at: https://serpapi.com/users/sign_up. The wrapper uses the SerpApi.com python package: https://serpapi.com/integrations/python To use, you should have the environment variable ``SERPAPI_API_KEY`` set with your API key, or pass `serp_api_key` as a named parameter to the constructor. Example: .. code-block:: python from langchain_community.utilities import GoogleLensAPIWrapper google_lens = GoogleLensAPIWrapper() google_lens.run('langchain') """ serp_search_engine: Any = None serp_api_key: Optional[SecretStr] = None model_config = ConfigDict( extra="forbid", ) @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: """Validate that api key and python package exists in environment.""" values["serp_api_key"] = convert_to_secret_str( get_from_dict_or_env(values, "serp_api_key", "SERPAPI_API_KEY") ) return values
[docs] def run(self, query: str) -> str: """Run query through Google Trends with Serpapi""" serpapi_api_key = cast(SecretStr, self.serp_api_key) params = { "engine": "google_lens", "api_key": serpapi_api_key.get_secret_value(), "url": query, } queryURL = f"https://serpapi.com/search?engine={params['engine']}&api_key={params['api_key']}&url={params['url']}" response = requests.get(queryURL) if response.status_code != 200: return "Google Lens search failed" responseValue = response.json() if responseValue["search_metadata"]["status"] != "Success": return "Google Lens search failed" xs = "" if ( "knowledge_graph" in responseValue and len(responseValue["knowledge_graph"]) > 0 ): subject = responseValue["knowledge_graph"][0] xs += f"Subject:{subject['title']}({subject['subtitle']})\n" xs += f"Link to subject:{subject['link']}\n\n" xs += "Related Images:\n\n" for image in responseValue["visual_matches"]: xs += f"Title: {image['title']}\n" xs += f"Source({image['source']}): {image['link']}\n" xs += f"Image: {image['thumbnail']}\n\n" if "reverse_image_search" in responseValue: xs += ( "Reverse Image Search" + f"Link: {responseValue['reverse_image_search']['link']}\n" ) print(xs) # noqa: T201 docs = [xs] return "\n\n".join(docs)