langchain_community.utilities.rememberizer ηš„ζΊδ»£η 

"""Wrapper for Rememberizer APIs."""

from typing import Any, Dict, List, Optional, cast

import requests
from langchain_core.documents import Document
from langchain_core.utils import get_from_dict_or_env
from pydantic import BaseModel, model_validator


[docs] class RememberizerAPIWrapper(BaseModel): """Wrapper for Rememberizer APIs.""" top_k_results: int = 10 rememberizer_api_key: Optional[str] = None @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: """Validate that api key in environment.""" rememberizer_api_key = get_from_dict_or_env( values, "rememberizer_api_key", "REMEMBERIZER_API_KEY" ) values["rememberizer_api_key"] = rememberizer_api_key return values
[docs] def search(self, query: str) -> dict: """Search for a query in the Rememberizer API.""" url = f"https://api.rememberizer.ai/api/v1/documents/search?q={query}&n={self.top_k_results}" response = requests.get( url, headers={"x-api-key": cast(str, self.rememberizer_api_key)} ) data = response.json() if response.status_code != 200: raise ValueError(f"API Error: {data}") matched_chunks = data.get("matched_chunks", []) return matched_chunks
[docs] def load(self, query: str) -> List[Document]: matched_chunks = self.search(query) docs = [] for matched_chunk in matched_chunks: docs.append( Document( page_content=matched_chunk["matched_content"], metadata=matched_chunk["document"], ) ) return docs