langchain_community.utilities.tavily_search ηš„ζΊδ»£η 

"""Util that calls Tavily Search API.

In order to set this up, follow instructions at:
https://docs.tavily.com/docs/tavily-api/introduction
"""

import json
from typing import Any, Dict, List, Optional

import aiohttp
import requests
from langchain_core.utils import get_from_dict_or_env
from pydantic import BaseModel, ConfigDict, SecretStr, model_validator

TAVILY_API_URL = "https://api.tavily.com"


[docs] class TavilySearchAPIWrapper(BaseModel): """Wrapper for Tavily Search API.""" tavily_api_key: SecretStr model_config = ConfigDict( extra="forbid", ) @model_validator(mode="before") @classmethod def validate_environment(cls, values: Dict) -> Any: """Validate that api key and endpoint exists in environment.""" tavily_api_key = get_from_dict_or_env( values, "tavily_api_key", "TAVILY_API_KEY" ) values["tavily_api_key"] = tavily_api_key return values
[docs] def raw_results( self, query: str, max_results: Optional[int] = 5, search_depth: Optional[str] = "advanced", include_domains: Optional[List[str]] = [], exclude_domains: Optional[List[str]] = [], include_answer: Optional[bool] = False, include_raw_content: Optional[bool] = False, include_images: Optional[bool] = False, ) -> Dict: params = { "api_key": self.tavily_api_key.get_secret_value(), "query": query, "max_results": max_results, "search_depth": search_depth, "include_domains": include_domains, "exclude_domains": exclude_domains, "include_answer": include_answer, "include_raw_content": include_raw_content, "include_images": include_images, } response = requests.post( # type: ignore f"{TAVILY_API_URL}/search", json=params, ) response.raise_for_status() return response.json()
[docs] def results( self, query: str, max_results: Optional[int] = 5, search_depth: Optional[str] = "advanced", include_domains: Optional[List[str]] = [], exclude_domains: Optional[List[str]] = [], include_answer: Optional[bool] = False, include_raw_content: Optional[bool] = False, include_images: Optional[bool] = False, ) -> List[Dict]: """Run query through Tavily Search and return metadata. Args: query: The query to search for. max_results: The maximum number of results to return. search_depth: The depth of the search. Can be "basic" or "advanced". include_domains: A list of domains to include in the search. exclude_domains: A list of domains to exclude from the search. include_answer: Whether to include the answer in the results. include_raw_content: Whether to include the raw content in the results. include_images: Whether to include images in the results. Returns: query: The query that was searched for. follow_up_questions: A list of follow up questions. response_time: The response time of the query. answer: The answer to the query. images: A list of images. results: A list of dictionaries containing the results: title: The title of the result. url: The url of the result. content: The content of the result. score: The score of the result. raw_content: The raw content of the result. """ raw_search_results = self.raw_results( query, max_results=max_results, search_depth=search_depth, include_domains=include_domains, exclude_domains=exclude_domains, include_answer=include_answer, include_raw_content=include_raw_content, include_images=include_images, ) return self.clean_results(raw_search_results["results"])
[docs] async def raw_results_async( self, query: str, max_results: Optional[int] = 5, search_depth: Optional[str] = "advanced", include_domains: Optional[List[str]] = [], exclude_domains: Optional[List[str]] = [], include_answer: Optional[bool] = False, include_raw_content: Optional[bool] = False, include_images: Optional[bool] = False, ) -> Dict: """Get results from the Tavily Search API asynchronously.""" # Function to perform the API call async def fetch() -> str: params = { "api_key": self.tavily_api_key.get_secret_value(), "query": query, "max_results": max_results, "search_depth": search_depth, "include_domains": include_domains, "exclude_domains": exclude_domains, "include_answer": include_answer, "include_raw_content": include_raw_content, "include_images": include_images, } async with aiohttp.ClientSession() as session: async with session.post(f"{TAVILY_API_URL}/search", json=params) as res: if res.status == 200: data = await res.text() return data else: raise Exception(f"Error {res.status}: {res.reason}") results_json_str = await fetch() return json.loads(results_json_str)
[docs] async def results_async( self, query: str, max_results: Optional[int] = 5, search_depth: Optional[str] = "advanced", include_domains: Optional[List[str]] = [], exclude_domains: Optional[List[str]] = [], include_answer: Optional[bool] = False, include_raw_content: Optional[bool] = False, include_images: Optional[bool] = False, ) -> List[Dict]: results_json = await self.raw_results_async( query=query, max_results=max_results, search_depth=search_depth, include_domains=include_domains, exclude_domains=exclude_domains, include_answer=include_answer, include_raw_content=include_raw_content, include_images=include_images, ) return self.clean_results(results_json["results"])
[docs] def clean_results(self, results: List[Dict]) -> List[Dict]: """Clean results from Tavily Search API.""" clean_results = [] for result in results: clean_results.append( { "url": result["url"], "content": result["content"], } ) return clean_results