langchain_community.utilities.vertexai ηš„ζΊδ»£η 

"""Utilities to init Vertex AI."""

from importlib import metadata
from typing import TYPE_CHECKING, Any, Callable, Optional, Union

from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models.llms import BaseLLM, create_base_retry_decorator

if TYPE_CHECKING:
    from google.api_core.gapic_v1.client_info import ClientInfo
    from google.auth.credentials import Credentials
    from vertexai.preview.generative_models import Image


[docs] def create_retry_decorator( llm: BaseLLM, *, max_retries: int = 1, run_manager: Optional[ Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun] ] = None, ) -> Callable[[Any], Any]: """Create a retry decorator for Vertex / Palm LLMs.""" import google.api_core errors = [ google.api_core.exceptions.ResourceExhausted, google.api_core.exceptions.ServiceUnavailable, google.api_core.exceptions.Aborted, google.api_core.exceptions.DeadlineExceeded, google.api_core.exceptions.GoogleAPIError, ] decorator = create_base_retry_decorator( error_types=errors, max_retries=max_retries, run_manager=run_manager ) return decorator
[docs] def raise_vertex_import_error(minimum_expected_version: str = "1.38.0") -> None: """Raise ImportError related to Vertex SDK being not available. Args: minimum_expected_version: The lowest expected version of the SDK. Raises: ImportError: an ImportError that mentions a required version of the SDK. """ raise ImportError( "Please, install or upgrade the google-cloud-aiplatform library: " f"pip install google-cloud-aiplatform>={minimum_expected_version}" )
[docs] def init_vertexai( project: Optional[str] = None, location: Optional[str] = None, credentials: Optional["Credentials"] = None, ) -> None: """Init Vertex AI. Args: project: The default GCP project to use when making Vertex API calls. location: The default location to use when making API calls. credentials: The default custom credentials to use when making API calls. If not provided credentials will be ascertained from the environment. Raises: ImportError: If importing vertexai SDK did not succeed. """ try: import vertexai except ImportError: raise_vertex_import_error() vertexai.init( project=project, location=location, credentials=credentials, )
[docs] def get_client_info(module: Optional[str] = None) -> "ClientInfo": r"""Return a custom user agent header. Args: module (Optional[str]): Optional. The module for a custom user agent header. Returns: google.api_core.gapic_v1.client_info.ClientInfo """ try: from google.api_core.gapic_v1.client_info import ClientInfo except ImportError as exc: raise ImportError( "Could not import ClientInfo. Please, install it with " "pip install google-api-core" ) from exc langchain_version = metadata.version("langchain") client_library_version = ( f"{langchain_version}-{module}" if module else langchain_version ) return ClientInfo( client_library_version=client_library_version, user_agent=f"langchain/{client_library_version}", )
[docs] def load_image_from_gcs(path: str, project: Optional[str] = None) -> "Image": """Load an image from Google Cloud Storage.""" try: from google.cloud import storage except ImportError: raise ImportError("Could not import google-cloud-storage python package.") from vertexai.preview.generative_models import Image gcs_client = storage.Client(project=project) pieces = path.split("/") blobs = list(gcs_client.list_blobs(pieces[2], prefix="/".join(pieces[3:]))) if len(blobs) > 1: raise ValueError(f"Found more than one candidate for {path}!") return Image.from_bytes(blobs[0].download_as_bytes())