langchain_community.vectorstores.aerospike ηš„ζΊδ»£η 

from __future__ import annotations

import logging
import uuid
import warnings
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Iterable,
    List,
    Optional,
    Tuple,
    TypeVar,
    Union,
)

import numpy as np
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore

from langchain_community.vectorstores.utils import (
    DistanceStrategy,
    maximal_marginal_relevance,
)

if TYPE_CHECKING:
    from aerospike_vector_search import Client
    from aerospike_vector_search.types import Neighbor, VectorDistanceMetric

logger = logging.getLogger(__name__)


def _import_aerospike() -> Any:
    try:
        from aerospike_vector_search import Client
    except ImportError as e:
        raise ImportError(
            "Could not import aerospike_vector_search python package. "
            "Please install it with `pip install aerospike_vector`."
        ) from e
    return Client


AVST = TypeVar("AVST", bound="Aerospike")


[docs] class Aerospike(VectorStore): """`Aerospike` vector store. To use, you should have the ``aerospike_vector_search`` python package installed. """
[docs] def __init__( self, client: Client, embedding: Union[Embeddings, Callable], namespace: str, index_name: Optional[str] = None, vector_key: str = "_vector", text_key: str = "_text", id_key: str = "_id", set_name: Optional[str] = None, distance_strategy: Optional[ Union[DistanceStrategy, VectorDistanceMetric] ] = DistanceStrategy.EUCLIDEAN_DISTANCE, ): """Initialize with Aerospike client. Args: client: Aerospike client. embedding: Embeddings object or Callable (deprecated) to embed text. namespace: Namespace to use for storing vectors. This should match index_name: Name of the index previously created in Aerospike. This vector_key: Key to use for vector in metadata. This should match the key used during index creation. text_key: Key to use for text in metadata. id_key: Key to use for id in metadata. set_name: Default set name to use for storing vectors. distance_strategy: Distance strategy to use for similarity search This should match the distance strategy used during index creation. """ aerospike = _import_aerospike() if not isinstance(embedding, Embeddings): warnings.warn( "Passing in `embedding` as a Callable is deprecated. Please pass in an" " Embeddings object instead." ) if not isinstance(client, aerospike): raise ValueError( f"client should be an instance of aerospike_vector_search.Client, " f"got {type(client)}" ) self._client = client self._embedding = embedding self._text_key = text_key self._vector_key = vector_key self._id_key = id_key self._index_name = index_name self._namespace = namespace self._set_name = set_name self._distance_strategy = self.convert_distance_strategy(distance_strategy)
@property def embeddings(self) -> Optional[Embeddings]: """Access the query embedding object if available.""" if isinstance(self._embedding, Embeddings): return self._embedding return None def _embed_documents(self, texts: Iterable[str]) -> List[List[float]]: """Embed search docs.""" if isinstance(self._embedding, Embeddings): return self._embedding.embed_documents(list(texts)) return [self._embedding(t) for t in texts] def _embed_query(self, text: str) -> List[float]: """Embed query text.""" if isinstance(self._embedding, Embeddings): return self._embedding.embed_query(text) return self._embedding(text)
[docs] @staticmethod def convert_distance_strategy( distance_strategy: Union[VectorDistanceMetric, DistanceStrategy], ) -> DistanceStrategy: """ Convert Aerospikes distance strategy to langchains DistanceStrategy enum. This is a convenience method to allow users to pass in the same distance metric used to create the index. """ from aerospike_vector_search.types import VectorDistanceMetric if isinstance(distance_strategy, DistanceStrategy): return distance_strategy if distance_strategy == VectorDistanceMetric.COSINE: return DistanceStrategy.COSINE if distance_strategy == VectorDistanceMetric.DOT_PRODUCT: return DistanceStrategy.DOT_PRODUCT if distance_strategy == VectorDistanceMetric.SQUARED_EUCLIDEAN: return DistanceStrategy.EUCLIDEAN_DISTANCE raise ValueError( "Unknown distance strategy, must be cosine, dot_product" ", or euclidean" )
[docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, set_name: Optional[str] = None, embedding_chunk_size: int = 1000, index_name: Optional[str] = None, wait_for_index: bool = True, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadata associated with the texts. ids: Optional list of ids to associate with the texts. set_name: Optional aerospike set name to add the texts to. batch_size: Batch size to use when adding the texts to the vectorstore. embedding_chunk_size: Chunk size to use when embedding the texts. index_name: Optional aerospike index name used for waiting for index completion. If not provided, the default index_name will be used. wait_for_index: If True, wait for the all the texts to be indexed before returning. Requires index_name to be provided. Defaults to True. kwargs: Additional keyword arguments to pass to the client upsert call. Returns: List of ids from adding the texts into the vectorstore. """ if set_name is None: set_name = self._set_name if index_name is None: index_name = self._index_name if wait_for_index and index_name is None: raise ValueError("if wait_for_index is True, index_name must be provided") texts = list(texts) ids = ids or [str(uuid.uuid4()) for _ in texts] # We need to shallow copy so that we can add the vector and text keys if metadatas: metadatas = [m.copy() for m in metadatas] else: metadatas = metadatas or [{} for _ in texts] for i in range(0, len(texts), embedding_chunk_size): chunk_texts = texts[i : i + embedding_chunk_size] chunk_ids = ids[i : i + embedding_chunk_size] chunk_metadatas = metadatas[i : i + embedding_chunk_size] embeddings = self._embed_documents(chunk_texts) for metadata, embedding, text in zip( chunk_metadatas, embeddings, chunk_texts ): metadata[self._vector_key] = embedding metadata[self._text_key] = text for id, metadata in zip(chunk_ids, chunk_metadatas): metadata[self._id_key] = id self._client.upsert( namespace=self._namespace, key=id, set_name=set_name, record_data=metadata, **kwargs, ) if wait_for_index: self._client.wait_for_index_completion( namespace=self._namespace, name=index_name, ) return ids
[docs] def delete( self, ids: Optional[List[str]] = None, set_name: Optional[str] = None, **kwargs: Any, ) -> Optional[bool]: """Delete by vector ID or other criteria. Args: ids: List of ids to delete. **kwargs: Other keyword arguments to pass to client delete call. Returns: Optional[bool]: True if deletion is successful, False otherwise, None if not implemented. """ from aerospike_vector_search import AVSServerError if ids: for id in ids: try: self._client.delete( namespace=self._namespace, key=id, set_name=set_name, **kwargs, ) except AVSServerError: return False return True
[docs] def similarity_search_with_score( self, query: str, k: int = 4, metadata_keys: Optional[List[str]] = None, index_name: Optional[str] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return aerospike documents most similar to query, along with scores. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. metadata_keys: List of metadata keys to return with the documents. If None, all metadata keys will be returned. Defaults to None. index_name: Name of the index to search. Overrides the default index_name. kwargs: Additional keyword arguments to pass to the search method. Returns: List of Documents most similar to the query and associated scores. """ return self.similarity_search_by_vector_with_score( self._embed_query(query), k=k, metadata_keys=metadata_keys, index_name=index_name, **kwargs, )
[docs] def similarity_search_by_vector_with_score( self, embedding: List[float], k: int = 4, metadata_keys: Optional[List[str]] = None, index_name: Optional[str] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return aerospike documents most similar to embedding, along with scores. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. metadata_keys: List of metadata keys to return with the documents. If None, all metadata keys will be returned. Defaults to None. index_name: Name of the index to search. Overrides the default index_name. kwargs: Additional keyword arguments to pass to the client vector_search method. Returns: List of Documents most similar to the query and associated scores. """ docs = [] if metadata_keys and self._text_key not in metadata_keys: metadata_keys = [self._text_key] + metadata_keys if index_name is None: index_name = self._index_name if index_name is None: raise ValueError("index_name must be provided") results: list[Neighbor] = self._client.vector_search( index_name=index_name, namespace=self._namespace, query=embedding, limit=k, field_names=metadata_keys, **kwargs, ) for result in results: metadata = result.fields if self._text_key in metadata: text = metadata.pop(self._text_key) score = result.distance docs.append((Document(page_content=text, metadata=metadata), score)) else: logger.warning( f"Found document with no `{self._text_key}` key. Skipping." ) continue return docs
[docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, metadata_keys: Optional[List[str]] = None, index_name: Optional[str] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. metadata_keys: List of metadata keys to return with the documents. If None, all metadata keys will be returned. Defaults to None. index_name: Name of the index to search. Overrides the default index_name. kwargs: Additional keyword arguments to pass to the search method. Returns: List of Documents most similar to the query vector. """ return [ doc for doc, _ in self.similarity_search_by_vector_with_score( embedding, k=k, metadata_keys=metadata_keys, index_name=index_name, **kwargs, ) ]
def _select_relevance_score_fn(self) -> Callable[[float], float]: """ The 'correct' relevance function may differ depending on a few things, including: - the distance / similarity metric used by the VectorStore - the scale of your embeddings (OpenAI's are unit normed. Many others are not!) - embedding dimensionality - etc. 0 is dissimilar, 1 is similar. Aerospike's relevance_fn assume euclidean and dot product embeddings are normalized to unit norm. """ if self._distance_strategy == DistanceStrategy.COSINE: return self._cosine_relevance_score_fn elif self._distance_strategy == DistanceStrategy.DOT_PRODUCT: return self._max_inner_product_relevance_score_fn elif self._distance_strategy == DistanceStrategy.EUCLIDEAN_DISTANCE: return self._euclidean_relevance_score_fn else: raise ValueError( "Unknown distance strategy, must be cosine, dot_product" ", or euclidean" ) @staticmethod def _cosine_relevance_score_fn(score: float) -> float: """Aerospike returns cosine distance scores between [0,2] 0 is dissimilar, 1 is similar. """ return 1 - (score / 2)
[docs] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, metadata_keys: Optional[List[str]] = None, index_name: Optional[str] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. metadata_keys: List of metadata keys to return with the documents. If None, all metadata keys will be returned. Defaults to None. index_name: Optional name of the index to search. Overrides the default index_name. Returns: List of Documents selected by maximal marginal relevance. """ if metadata_keys and self._vector_key not in metadata_keys: metadata_keys = [self._vector_key] + metadata_keys docs = self.similarity_search_by_vector( embedding, k=fetch_k, metadata_keys=metadata_keys, index_name=index_name, **kwargs, ) mmr_selected = maximal_marginal_relevance( np.array([embedding], dtype=np.float32), [doc.metadata[self._vector_key] for doc in docs], k=k, lambda_mult=lambda_mult, ) if metadata_keys and self._vector_key in metadata_keys: for i in mmr_selected: docs[i].metadata.pop(self._vector_key) return [docs[i] for i in mmr_selected]
[docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, client: Client = None, namespace: str = "test", index_name: Optional[str] = None, ids: Optional[List[str]] = None, embeddings_chunk_size: int = 1000, client_kwargs: Optional[dict] = None, **kwargs: Any, ) -> Aerospike: """ This is a user friendly interface that: 1. Embeds text. 2. Converts the texts into documents. 3. Adds the documents to a provided Aerospike index This is intended to be a quick way to get started. Example: .. code-block:: python from langchain_community.vectorstores import Aerospike from langchain_openai import OpenAIEmbeddings from aerospike_vector_search import Client, HostPort client = Client(seeds=HostPort(host="localhost", port=5000)) aerospike = Aerospike.from_texts( ["foo", "bar", "baz"], embedder, client, "namespace", index_name="index", vector_key="vector", distance_strategy=MODEL_DISTANCE_CALC, ) """ aerospike = cls( client, embedding, namespace, **kwargs, ) aerospike.add_texts( texts, metadatas=metadatas, ids=ids, index_name=index_name, embedding_chunk_size=embeddings_chunk_size, **(client_kwargs or {}), ) return aerospike