langchain_community.vectorstores.awadb ηš„ζΊδ»£η 

from __future__ import annotations

import logging
import uuid
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Set, Tuple, Type

import numpy as np
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore

from langchain_community.vectorstores.utils import maximal_marginal_relevance

if TYPE_CHECKING:
    import awadb

logger = logging.getLogger()
DEFAULT_TOPN = 4


[docs] class AwaDB(VectorStore): """`AwaDB` vector store.""" _DEFAULT_TABLE_NAME: str = "langchain_awadb"
[docs] def __init__( self, table_name: str = _DEFAULT_TABLE_NAME, embedding: Optional[Embeddings] = None, log_and_data_dir: Optional[str] = None, client: Optional[awadb.Client] = None, **kwargs: Any, ) -> None: """Initialize with AwaDB client. If table_name is not specified, a random table name of `_DEFAULT_TABLE_NAME + last segment of uuid` would be created automatically. Args: table_name: Name of the table created, default _DEFAULT_TABLE_NAME. embedding: Optional Embeddings initially set. log_and_data_dir: Optional the root directory of log and data. client: Optional AwaDB client. kwargs: Any possible extend parameters in the future. Returns: None. """ try: import awadb except ImportError: raise ImportError( "Could not import awadb python package. " "Please install it with `pip install awadb`." ) if client is not None: self.awadb_client = client else: if log_and_data_dir is not None: self.awadb_client = awadb.Client(log_and_data_dir) else: self.awadb_client = awadb.Client() if table_name == self._DEFAULT_TABLE_NAME: table_name += "_" table_name += str(uuid.uuid4()).split("-")[-1] self.awadb_client.Create(table_name) self.table2embeddings: dict[str, Embeddings] = {} if embedding is not None: self.table2embeddings[table_name] = embedding self.using_table_name = table_name
@property def embeddings(self) -> Optional[Embeddings]: if self.using_table_name in self.table2embeddings: return self.table2embeddings[self.using_table_name] return None
[docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, is_duplicate_texts: Optional[bool] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. is_duplicate_texts: Optional whether to duplicate texts. Defaults to True. kwargs: any possible extend parameters in the future. Returns: List of ids from adding the texts into the vectorstore. """ if self.awadb_client is None: raise ValueError("AwaDB client is None!!!") embeddings = None if self.using_table_name in self.table2embeddings: embeddings = self.table2embeddings[self.using_table_name].embed_documents( list(texts) ) return self.awadb_client.AddTexts( "embedding_text", "text_embedding", texts, embeddings, metadatas, is_duplicate_texts, )
[docs] def load_local( self, table_name: str, **kwargs: Any, ) -> bool: """Load the local specified table. Args: table_name: Table name kwargs: Any possible extend parameters in the future. Returns: Success or failure of loading the local specified table """ if self.awadb_client is None: raise ValueError("AwaDB client is None!!!") return self.awadb_client.Load(table_name)
[docs] def similarity_search_with_score( self, query: str, k: int = DEFAULT_TOPN, text_in_page_content: Optional[str] = None, meta_filter: Optional[dict] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """The most k similar documents and scores of the specified query. Args: query: Text query. k: The k most similar documents to the text query. text_in_page_content: Filter by the text in page_content of Document. meta_filter: Filter by metadata. Defaults to None. kwargs: Any possible extend parameters in the future. Returns: The k most similar documents to the specified text query. 0 is dissimilar, 1 is the most similar. """ if self.awadb_client is None: raise ValueError("AwaDB client is None!!!") embedding = None if self.using_table_name in self.table2embeddings: embedding = self.table2embeddings[self.using_table_name].embed_query(query) else: from awadb import AwaEmbedding embedding = AwaEmbedding().Embedding(query) results: List[Tuple[Document, float]] = [] not_include_fields: Set[str] = {"text_embedding", "_id"} retrieval_docs = self.similarity_search_by_vector( embedding, k, text_in_page_content=text_in_page_content, meta_filter=meta_filter, not_include_fields_in_metadata=not_include_fields, ) for doc in retrieval_docs: score = doc.metadata["score"] del doc.metadata["score"] doc_tuple = (doc, score) results.append(doc_tuple) return results
def _similarity_search_with_relevance_scores( self, query: str, k: int = 4, **kwargs: Any, ) -> List[Tuple[Document, float]]: return self.similarity_search_with_score(query, k, **kwargs)
[docs] def similarity_search_by_vector( self, embedding: Optional[List[float]] = None, k: int = DEFAULT_TOPN, text_in_page_content: Optional[str] = None, meta_filter: Optional[dict] = None, not_include_fields_in_metadata: Optional[Set[str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. text_in_page_content: Filter by the text in page_content of Document. meta_filter: Filter by metadata. Defaults to None. not_incude_fields_in_metadata: Not include meta fields of each document. Returns: List of Documents which are the most similar to the query vector. """ if self.awadb_client is None: raise ValueError("AwaDB client is None!!!") results: List[Document] = [] if embedding is None: return results show_results = self.awadb_client.Search( embedding, k, text_in_page_content=text_in_page_content, meta_filter=meta_filter, not_include_fields=not_include_fields_in_metadata, ) if show_results.__len__() == 0: return results for item_detail in show_results[0]["ResultItems"]: content = "" meta_data = {} for item_key in item_detail: if item_key == "embedding_text": content = item_detail[item_key] continue elif not_include_fields_in_metadata is not None: if item_key in not_include_fields_in_metadata: continue meta_data[item_key] = item_detail[item_key] results.append(Document(page_content=content, metadata=meta_data)) return results
[docs] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, text_in_page_content: Optional[str] = None, meta_filter: Optional[dict] = None, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. text_in_page_content: Filter by the text in page_content of Document. meta_filter (Optional[dict]): Filter by metadata. Defaults to None. Returns: List of Documents selected by maximal marginal relevance. """ if self.awadb_client is None: raise ValueError("AwaDB client is None!!!") results: List[Document] = [] if embedding is None: return results not_include_fields: set = {"_id", "score"} retrieved_docs = self.similarity_search_by_vector( embedding, fetch_k, text_in_page_content=text_in_page_content, meta_filter=meta_filter, not_include_fields_in_metadata=not_include_fields, ) top_embeddings = [] for doc in retrieved_docs: top_embeddings.append(doc.metadata["text_embedding"]) selected_docs = maximal_marginal_relevance( np.array(embedding, dtype=np.float32), embedding_list=top_embeddings ) for s_id in selected_docs: if "text_embedding" in retrieved_docs[s_id].metadata: del retrieved_docs[s_id].metadata["text_embedding"] results.append(retrieved_docs[s_id]) return results
[docs] def get( self, ids: Optional[List[str]] = None, text_in_page_content: Optional[str] = None, meta_filter: Optional[dict] = None, not_include_fields: Optional[Set[str]] = None, limit: Optional[int] = None, **kwargs: Any, ) -> Dict[str, Document]: """Return docs according ids. Args: ids: The ids of the embedding vectors. text_in_page_content: Filter by the text in page_content of Document. meta_filter: Filter by any metadata of the document. not_include_fields: Not pack the specified fields of each document. limit: The number of documents to return. Defaults to 5. Optional. Returns: Documents which satisfy the input conditions. """ if self.awadb_client is None: raise ValueError("AwaDB client is None!!!") docs_detail = self.awadb_client.Get( ids=ids, text_in_page_content=text_in_page_content, meta_filter=meta_filter, not_include_fields=not_include_fields, limit=limit, ) results: Dict[str, Document] = {} for doc_detail in docs_detail: content = "" meta_info = {} for field in doc_detail: if field == "embedding_text": content = doc_detail[field] continue elif field == "text_embedding" or field == "_id": continue meta_info[field] = doc_detail[field] doc = Document(page_content=content, metadata=meta_info) results[doc_detail["_id"]] = doc return results
[docs] def delete( self, ids: Optional[List[str]] = None, **kwargs: Any, ) -> Optional[bool]: """Delete the documents which have the specified ids. Args: ids: The ids of the embedding vectors. **kwargs: Other keyword arguments that subclasses might use. Returns: Optional[bool]: True if deletion is successful. False otherwise, None if not implemented. """ if self.awadb_client is None: raise ValueError("AwaDB client is None!!!") ret: Optional[bool] = None if ids is None or ids.__len__() == 0: return ret ret = self.awadb_client.Delete(ids) return ret
[docs] def update( self, ids: List[str], texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Update the documents which have the specified ids. Args: ids: The id list of the updating embedding vector. texts: The texts of the updating documents. metadatas: The metadatas of the updating documents. Returns: the ids of the updated documents. """ if self.awadb_client is None: raise ValueError("AwaDB client is None!!!") return self.awadb_client.UpdateTexts( ids=ids, text_field_name="embedding_text", texts=texts, metadatas=metadatas )
[docs] def create_table( self, table_name: str, **kwargs: Any, ) -> bool: """Create a new table.""" if self.awadb_client is None: return False ret = self.awadb_client.Create(table_name) if ret: self.using_table_name = table_name return ret
[docs] def use( self, table_name: str, **kwargs: Any, ) -> bool: """Use the specified table. Don't know the tables, please invoke list_tables.""" if self.awadb_client is None: return False ret = self.awadb_client.Use(table_name) if ret: self.using_table_name = table_name return ret
[docs] def list_tables( self, **kwargs: Any, ) -> List[str]: """List all the tables created by the client.""" if self.awadb_client is None: return [] return self.awadb_client.ListAllTables()
[docs] def get_current_table( self, **kwargs: Any, ) -> str: """Get the current table.""" return self.using_table_name
[docs] @classmethod def from_texts( cls: Type[AwaDB], texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, table_name: str = _DEFAULT_TABLE_NAME, log_and_data_dir: Optional[str] = None, client: Optional[awadb.Client] = None, **kwargs: Any, ) -> AwaDB: """Create an AwaDB vectorstore from a raw documents. Args: texts (List[str]): List of texts to add to the table. embedding (Optional[Embeddings]): Embedding function. Defaults to None. metadatas (Optional[List[dict]]): List of metadatas. Defaults to None. table_name (str): Name of the table to create. log_and_data_dir (Optional[str]): Directory of logging and persistence. client (Optional[awadb.Client]): AwaDB client Returns: AwaDB: AwaDB vectorstore. """ awadb_client = cls( table_name=table_name, embedding=embedding, log_and_data_dir=log_and_data_dir, client=client, ) awadb_client.add_texts(texts=texts, metadatas=metadatas) return awadb_client
[docs] @classmethod def from_documents( cls: Type[AwaDB], documents: List[Document], embedding: Optional[Embeddings] = None, table_name: str = _DEFAULT_TABLE_NAME, log_and_data_dir: Optional[str] = None, client: Optional[awadb.Client] = None, **kwargs: Any, ) -> AwaDB: """Create an AwaDB vectorstore from a list of documents. If a log_and_data_dir specified, the table will be persisted there. Args: documents (List[Document]): List of documents to add to the vectorstore. embedding (Optional[Embeddings]): Embedding function. Defaults to None. table_name (str): Name of the table to create. log_and_data_dir (Optional[str]): Directory to persist the table. client (Optional[awadb.Client]): AwaDB client. Any: Any possible parameters in the future Returns: AwaDB: AwaDB vectorstore. """ texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return cls.from_texts( texts=texts, embedding=embedding, metadatas=metadatas, table_name=table_name, log_and_data_dir=log_and_data_dir, client=client, )