langchain_community.vectorstores.bagel ηš„ζΊδ»£η 

from __future__ import annotations

import uuid
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Dict,
    Iterable,
    List,
    Optional,
    Tuple,
    Type,
)

if TYPE_CHECKING:
    import bagel
    import bagel.config
    from bagel.api.types import ID, OneOrMany, Where, WhereDocument

from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.utils import xor_args
from langchain_core.vectorstores import VectorStore

DEFAULT_K = 5


def _results_to_docs(results: Any) -> List[Document]:
    return [doc for doc, _ in _results_to_docs_and_scores(results)]


def _results_to_docs_and_scores(results: Any) -> List[Tuple[Document, float]]:
    return [
        (Document(page_content=result[0], metadata=result[1] or {}), result[2])
        for result in zip(
            results["documents"][0],
            results["metadatas"][0],
            results["distances"][0],
        )
    ]


[docs] class Bagel(VectorStore): """``Bagel.net`` Inference platform. To use, you should have the ``bagelML`` python package installed. Example: .. code-block:: python from langchain_community.vectorstores import Bagel vectorstore = Bagel(cluster_name="langchain_store") """ _LANGCHAIN_DEFAULT_CLUSTER_NAME: str = "langchain"
[docs] def __init__( self, cluster_name: str = _LANGCHAIN_DEFAULT_CLUSTER_NAME, client_settings: Optional[bagel.config.Settings] = None, embedding_function: Optional[Embeddings] = None, cluster_metadata: Optional[Dict] = None, client: Optional[bagel.Client] = None, relevance_score_fn: Optional[Callable[[float], float]] = None, ) -> None: """Initialize with bagel client""" try: import bagel import bagel.config except ImportError: raise ImportError("Please install bagel `pip install bagelML`.") if client is not None: self._client_settings = client_settings self._client = client else: if client_settings: _client_settings = client_settings else: _client_settings = bagel.config.Settings( bagel_api_impl="rest", bagel_server_host="api.bageldb.ai", ) self._client_settings = _client_settings self._client = bagel.Client(_client_settings) self._cluster = self._client.get_or_create_cluster( name=cluster_name, metadata=cluster_metadata, ) self.override_relevance_score_fn = relevance_score_fn self._embedding_function = embedding_function
@property def embeddings(self) -> Optional[Embeddings]: return self._embedding_function @xor_args(("query_texts", "query_embeddings")) def __query_cluster( self, query_texts: Optional[List[str]] = None, query_embeddings: Optional[List[List[float]]] = None, n_results: int = 4, where: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Query the Bagel cluster based on the provided parameters.""" try: import bagel # noqa: F401 except ImportError: raise ImportError("Please install bagel `pip install bagelML`.") if self._embedding_function and query_embeddings is None and query_texts: texts = list(query_texts) query_embeddings = self._embedding_function.embed_documents(texts) query_texts = None return self._cluster.find( query_texts=query_texts, query_embeddings=query_embeddings, n_results=n_results, where=where, **kwargs, )
[docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, embeddings: Optional[List[List[float]]] = None, **kwargs: Any, ) -> List[str]: """ Add texts along with their corresponding embeddings and optional metadata to the Bagel cluster. Args: texts (Iterable[str]): Texts to be added. embeddings (Optional[List[float]]): List of embeddingvectors metadatas (Optional[List[dict]]): Optional list of metadatas. ids (Optional[List[str]]): List of unique ID for the texts. Returns: List[str]: List of unique ID representing the added texts. """ # creating unique ids if None if ids is None: ids = [str(uuid.uuid4()) for _ in texts] texts = list(texts) if self._embedding_function and embeddings is None and texts: embeddings = self._embedding_function.embed_documents(texts) if metadatas: length_diff = len(texts) - len(metadatas) if length_diff: metadatas = metadatas + [{}] * length_diff empty_ids = [] non_empty_ids = [] for idx, metadata in enumerate(metadatas): if metadata: non_empty_ids.append(idx) else: empty_ids.append(idx) if non_empty_ids: metadatas = [metadatas[idx] for idx in non_empty_ids] texts_with_metadatas = [texts[idx] for idx in non_empty_ids] embeddings_with_metadatas = ( [embeddings[idx] for idx in non_empty_ids] if embeddings else None ) ids_with_metadata = [ids[idx] for idx in non_empty_ids] self._cluster.upsert( embeddings=embeddings_with_metadatas, metadatas=metadatas, documents=texts_with_metadatas, ids=ids_with_metadata, ) if empty_ids: texts_without_metadatas = [texts[j] for j in empty_ids] embeddings_without_metadatas = ( [embeddings[j] for j in empty_ids] if embeddings else None ) ids_without_metadatas = [ids[j] for j in empty_ids] self._cluster.upsert( embeddings=embeddings_without_metadatas, documents=texts_without_metadatas, ids=ids_without_metadatas, ) else: metadatas = [{}] * len(texts) self._cluster.upsert( embeddings=embeddings, documents=texts, metadatas=metadatas, ids=ids, ) return ids
[docs] def similarity_search_with_score( self, query: str, k: int = DEFAULT_K, where: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """ Run a similarity search with Bagel and return documents with their corresponding similarity scores. Args: query (str): The query text to search for similar documents. k (int): The number of results to return. where (Optional[Dict[str, str]]): Filter using metadata. Returns: List[Tuple[Document, float]]: List of tuples, each containing a Document object representing a similar document and its corresponding similarity score. """ results = self.__query_cluster(query_texts=[query], n_results=k, where=where) return _results_to_docs_and_scores(results)
[docs] @classmethod def from_texts( cls: Type[Bagel], texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, cluster_name: str = _LANGCHAIN_DEFAULT_CLUSTER_NAME, client_settings: Optional[bagel.config.Settings] = None, cluster_metadata: Optional[Dict] = None, client: Optional[bagel.Client] = None, text_embeddings: Optional[List[List[float]]] = None, **kwargs: Any, ) -> Bagel: """ Create and initialize a Bagel instance from list of texts. Args: texts (List[str]): List of text content to be added. cluster_name (str): The name of the Bagel cluster. client_settings (Optional[bagel.config.Settings]): Client settings. cluster_metadata (Optional[Dict]): Metadata of the cluster. embeddings (Optional[Embeddings]): List of embedding. metadatas (Optional[List[dict]]): List of metadata. ids (Optional[List[str]]): List of unique ID. Defaults to None. client (Optional[bagel.Client]): Bagel client instance. Returns: Bagel: Bagel vectorstore. """ bagel_cluster = cls( cluster_name=cluster_name, embedding_function=embedding, client_settings=client_settings, client=client, cluster_metadata=cluster_metadata, **kwargs, ) _ = bagel_cluster.add_texts( texts=texts, embeddings=text_embeddings, metadatas=metadatas, ids=ids ) return bagel_cluster
[docs] def delete_cluster(self) -> None: """Delete the cluster.""" self._client.delete_cluster(self._cluster.name)
[docs] def similarity_search_by_vector_with_relevance_scores( self, query_embeddings: List[float], k: int = DEFAULT_K, where: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """ Return docs most similar to embedding vector and similarity score. """ results = self.__query_cluster( query_embeddings=query_embeddings, n_results=k, where=where ) return _results_to_docs_and_scores(results)
[docs] def similarity_search_by_vector( self, embedding: List[float], k: int = DEFAULT_K, where: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Document]: """Return docs most similar to embedding vector.""" results = self.__query_cluster( query_embeddings=embedding, n_results=k, where=where ) return _results_to_docs(results)
def _select_relevance_score_fn(self) -> Callable[[float], float]: """ Select and return the appropriate relevance score function based on the distance metric used in the Bagel cluster. """ if self.override_relevance_score_fn: return self.override_relevance_score_fn distance = "l2" distance_key = "hnsw:space" metadata = self._cluster.metadata if metadata and distance_key in metadata: distance = metadata[distance_key] if distance == "cosine": return self._cosine_relevance_score_fn elif distance == "l2": return self._euclidean_relevance_score_fn elif distance == "ip": return self._max_inner_product_relevance_score_fn else: raise ValueError( "No supported normalization function for distance" f" metric of type: {distance}. Consider providing" " relevance_score_fn to Bagel constructor." )
[docs] @classmethod def from_documents( cls: Type[Bagel], documents: List[Document], embedding: Optional[Embeddings] = None, ids: Optional[List[str]] = None, cluster_name: str = _LANGCHAIN_DEFAULT_CLUSTER_NAME, client_settings: Optional[bagel.config.Settings] = None, client: Optional[bagel.Client] = None, cluster_metadata: Optional[Dict] = None, **kwargs: Any, ) -> Bagel: """ Create a Bagel vectorstore from a list of documents. Args: documents (List[Document]): List of Document objects to add to the Bagel vectorstore. embedding (Optional[List[float]]): List of embedding. ids (Optional[List[str]]): List of IDs. Defaults to None. cluster_name (str): The name of the Bagel cluster. client_settings (Optional[bagel.config.Settings]): Client settings. client (Optional[bagel.Client]): Bagel client instance. cluster_metadata (Optional[Dict]): Metadata associated with the Bagel cluster. Defaults to None. Returns: Bagel: Bagel vectorstore. """ texts = [doc.page_content for doc in documents] metadatas = [doc.metadata for doc in documents] return cls.from_texts( texts=texts, embedding=embedding, metadatas=metadatas, ids=ids, cluster_name=cluster_name, client_settings=client_settings, client=client, cluster_metadata=cluster_metadata, **kwargs, )
[docs] def update_document(self, document_id: str, document: Document) -> None: """Update a document in the cluster. Args: document_id (str): ID of the document to update. document (Document): Document to update. """ text = document.page_content metadata = document.metadata self._cluster.update( ids=[document_id], documents=[text], metadatas=[metadata], )
[docs] def get( self, ids: Optional[OneOrMany[ID]] = None, where: Optional[Where] = None, limit: Optional[int] = None, offset: Optional[int] = None, where_document: Optional[WhereDocument] = None, include: Optional[List[str]] = None, ) -> Dict[str, Any]: """Gets the collection.""" kwargs = { "ids": ids, "where": where, "limit": limit, "offset": offset, "where_document": where_document, } if include is not None: kwargs["include"] = include return self._cluster.get(**kwargs)
[docs] def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> None: """ Delete by IDs. Args: ids: List of ids to delete. """ self._cluster.delete(ids=ids)