langchain_community.vectorstores.docarray.hnsw ηš„ζΊδ»£η 

from __future__ import annotations

from typing import Any, List, Literal, Optional

from langchain_core.embeddings import Embeddings

from langchain_community.vectorstores.docarray.base import (
    DocArrayIndex,
    _check_docarray_import,
)


[docs] class DocArrayHnswSearch(DocArrayIndex): """`HnswLib` storage using `DocArray` package. To use it, you should have the ``docarray`` package with version >=0.32.0 installed. You can install it with `pip install docarray`. """
[docs] @classmethod def from_params( cls, embedding: Embeddings, work_dir: str, n_dim: int, dist_metric: Literal["cosine", "ip", "l2"] = "cosine", max_elements: int = 1024, index: bool = True, ef_construction: int = 200, ef: int = 10, M: int = 16, allow_replace_deleted: bool = True, num_threads: int = 1, **kwargs: Any, ) -> DocArrayHnswSearch: """Initialize DocArrayHnswSearch store. Args: embedding (Embeddings): Embedding function. work_dir (str): path to the location where all the data will be stored. n_dim (int): dimension of an embedding. dist_metric (str): Distance metric for DocArrayHnswSearch can be one of: "cosine", "ip", and "l2". Defaults to "cosine". max_elements (int): Maximum number of vectors that can be stored. Defaults to 1024. index (bool): Whether an index should be built for this field. Defaults to True. ef_construction (int): defines a construction time/accuracy trade-off. Defaults to 200. ef (int): parameter controlling query time/accuracy trade-off. Defaults to 10. M (int): parameter that defines the maximum number of outgoing connections in the graph. Defaults to 16. allow_replace_deleted (bool): Enables replacing of deleted elements with new added ones. Defaults to True. num_threads (int): Sets the number of cpu threads to use. Defaults to 1. **kwargs: Other keyword arguments to be passed to the get_doc_cls method. """ _check_docarray_import() from docarray.index import HnswDocumentIndex doc_cls = cls._get_doc_cls( dim=n_dim, space=dist_metric, max_elements=max_elements, index=index, ef_construction=ef_construction, ef=ef, M=M, allow_replace_deleted=allow_replace_deleted, num_threads=num_threads, **kwargs, ) doc_index = HnswDocumentIndex[doc_cls](work_dir=work_dir) # type: ignore return cls(doc_index, embedding)
[docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, work_dir: Optional[str] = None, n_dim: Optional[int] = None, **kwargs: Any, ) -> DocArrayHnswSearch: """Create an DocArrayHnswSearch store and insert data. Args: texts (List[str]): Text data. embedding (Embeddings): Embedding function. metadatas (Optional[List[dict]]): Metadata for each text if it exists. Defaults to None. work_dir (str): path to the location where all the data will be stored. n_dim (int): dimension of an embedding. **kwargs: Other keyword arguments to be passed to the __init__ method. Returns: DocArrayHnswSearch Vector Store """ if work_dir is None: raise ValueError("`work_dir` parameter has not been set.") if n_dim is None: raise ValueError("`n_dim` parameter has not been set.") store = cls.from_params(embedding, work_dir, n_dim, **kwargs) store.add_texts(texts=texts, metadatas=metadatas) return store