langchain_community.vectorstores.docarray.in_memory ηš„ζΊδ»£η 

"""Wrapper around in-memory storage."""

from __future__ import annotations

from typing import Any, Dict, List, Literal, Optional

from langchain_core.embeddings import Embeddings

from langchain_community.vectorstores.docarray.base import (
    DocArrayIndex,
    _check_docarray_import,
)


[docs] class DocArrayInMemorySearch(DocArrayIndex): """In-memory `DocArray` storage for exact search. To use it, you should have the ``docarray`` package with version >=0.32.0 installed. You can install it with `pip install docarray`. """
[docs] @classmethod def from_params( cls, embedding: Embeddings, metric: Literal[ "cosine_sim", "euclidian_dist", "sgeuclidean_dist" ] = "cosine_sim", **kwargs: Any, ) -> DocArrayInMemorySearch: """Initialize DocArrayInMemorySearch store. Args: embedding (Embeddings): Embedding function. metric (str): metric for exact nearest-neighbor search. Can be one of: "cosine_sim", "euclidean_dist" and "sqeuclidean_dist". Defaults to "cosine_sim". **kwargs: Other keyword arguments to be passed to the get_doc_cls method. """ _check_docarray_import() from docarray.index import InMemoryExactNNIndex doc_cls = cls._get_doc_cls(space=metric, **kwargs) doc_index = InMemoryExactNNIndex[doc_cls]() # type: ignore return cls(doc_index, embedding)
[docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[Dict[Any, Any]]] = None, **kwargs: Any, ) -> DocArrayInMemorySearch: """Create an DocArrayInMemorySearch store and insert data. Args: texts (List[str]): Text data. embedding (Embeddings): Embedding function. metadatas (Optional[List[Dict[Any, Any]]]): Metadata for each text if it exists. Defaults to None. **kwargs: Other keyword arguments to be passed to the from_params method. Returns: DocArrayInMemorySearch Vector Store """ store = cls.from_params(embedding, **kwargs) store.add_texts(texts=texts, metadatas=metadatas) return store