langchain_community.vectorstores.myscale ηš„ζΊδ»£η 

from __future__ import annotations

import json
import logging
from hashlib import sha1
from threading import Thread
from typing import Any, Dict, Iterable, List, Optional, Tuple

from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore
from pydantic_settings import BaseSettings, SettingsConfigDict

logger = logging.getLogger()


[docs] def has_mul_sub_str(s: str, *args: Any) -> bool: """ Check if a string contains multiple substrings. Args: s: string to check. *args: substrings to check. Returns: True if all substrings are in the string, False otherwise. """ for a in args: if a not in s: return False return True
[docs] class MyScaleSettings(BaseSettings): """MyScale client configuration. Attribute: myscale_host (str) : An URL to connect to MyScale backend. Defaults to 'localhost'. myscale_port (int) : URL port to connect with HTTP. Defaults to 8443. username (str) : Username to login. Defaults to None. password (str) : Password to login. Defaults to None. index_type (str): index type string. index_param (dict): index build parameter. database (str) : Database name to find the table. Defaults to 'default'. table (str) : Table name to operate on. Defaults to 'vector_table'. metric (str) : Metric to compute distance, supported are ('L2', 'Cosine', 'IP'). Defaults to 'Cosine'. column_map (Dict) : Column type map to project column name onto langchain semantics. Must have keys: `text`, `id`, `vector`, must be same size to number of columns. For example: .. code-block:: python { 'id': 'text_id', 'vector': 'text_embedding', 'text': 'text_plain', 'metadata': 'metadata_dictionary_in_json', } Defaults to identity map. """ host: str = "localhost" port: int = 8443 username: Optional[str] = None password: Optional[str] = None index_type: str = "MSTG" index_param: Optional[Dict[str, str]] = None column_map: Dict[str, str] = { "id": "id", "text": "text", "vector": "vector", "metadata": "metadata", } database: str = "default" table: str = "langchain" metric: str = "Cosine" def __getitem__(self, item: str) -> Any: return getattr(self, item) model_config = SettingsConfigDict( env_file=".env", env_file_encoding="utf-8", env_prefix="myscale_", extra="ignore", )
[docs] class MyScale(VectorStore): """`MyScale` vector store. You need a `clickhouse-connect` python package, and a valid account to connect to MyScale. MyScale can not only search with simple vector indexes. It also supports a complex query with multiple conditions, constraints and even sub-queries. For more information, please visit [myscale official site](https://docs.myscale.com/en/overview/) """
[docs] def __init__( self, embedding: Embeddings, config: Optional[MyScaleSettings] = None, **kwargs: Any, ) -> None: """MyScale Wrapper to LangChain embedding (Embeddings): config (MyScaleSettings): Configuration to MyScale Client Other keyword arguments will pass into [clickhouse-connect](https://docs.myscale.com/) """ try: from clickhouse_connect import get_client except ImportError: raise ImportError( "Could not import clickhouse connect python package. " "Please install it with `pip install clickhouse-connect`." ) try: from tqdm import tqdm self.pgbar = tqdm except ImportError: # Just in case if tqdm is not installed self.pgbar = lambda x: x super().__init__() if config is not None: self.config = config else: self.config = MyScaleSettings() assert self.config assert self.config.host and self.config.port assert ( self.config.column_map and self.config.database and self.config.table and self.config.metric ) for k in ["id", "vector", "text", "metadata"]: assert k in self.config.column_map assert self.config.metric.upper() in ["IP", "COSINE", "L2"] if self.config.metric in ["ip", "cosine", "l2"]: logger.warning( "Lower case metric types will be deprecated " "the future. Please use one of ('IP', 'Cosine', 'L2')" ) # initialize the schema dim = len(embedding.embed_query("try this out")) index_params = ( ", " + ",".join([f"'{k}={v}'" for k, v in self.config.index_param.items()]) if self.config.index_param else "" ) schema_ = f""" CREATE TABLE IF NOT EXISTS {self.config.database}.{self.config.table}( {self.config.column_map['id']} String, {self.config.column_map['text']} String, {self.config.column_map['vector']} Array(Float32), {self.config.column_map['metadata']} JSON, CONSTRAINT cons_vec_len CHECK length(\ {self.config.column_map['vector']}) = {dim}, VECTOR INDEX vidx {self.config.column_map['vector']} \ TYPE {self.config.index_type}(\ 'metric_type={self.config.metric}'{index_params}) ) ENGINE = MergeTree ORDER BY {self.config.column_map['id']} """ self.dim = dim self.BS = "\\" self.must_escape = ("\\", "'") self._embeddings = embedding self.dist_order = ( "ASC" if self.config.metric.upper() in ["COSINE", "L2"] else "DESC" ) # Create a connection to myscale self.client = get_client( host=self.config.host, port=self.config.port, username=self.config.username, password=self.config.password, **kwargs, ) try: self.client.command("SET allow_experimental_json_type=1") except Exception as _: logger.debug( f"Clickhouse version={self.client.server_version} - " "There is no allow_experimental_json_type parameter." ) self.client.command("SET allow_experimental_object_type=1") self.client.command(schema_)
@property def embeddings(self) -> Embeddings: return self._embeddings
[docs] def escape_str(self, value: str) -> str: return "".join(f"{self.BS}{c}" if c in self.must_escape else c for c in value)
def _build_istr(self, transac: Iterable, column_names: Iterable[str]) -> str: ks = ",".join(column_names) _data = [] for n in transac: n = ",".join([f"'{self.escape_str(str(_n))}'" for _n in n]) _data.append(f"({n})") i_str = f""" INSERT INTO TABLE {self.config.database}.{self.config.table}({ks}) VALUES {','.join(_data)} """ return i_str def _insert(self, transac: Iterable, column_names: Iterable[str]) -> None: _i_str = self._build_istr(transac, column_names) self.client.command(_i_str)
[docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, batch_size: int = 32, ids: Optional[Iterable[str]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. ids: Optional list of ids to associate with the texts. batch_size: Batch size of insertion metadata: Optional column data to be inserted Returns: List of ids from adding the texts into the vectorstore. """ # Embed and create the documents ids = ids or [sha1(t.encode("utf-8")).hexdigest() for t in texts] colmap_ = self.config.column_map transac = [] column_names = { colmap_["id"]: ids, colmap_["text"]: texts, colmap_["vector"]: map(self._embeddings.embed_query, texts), } metadatas = metadatas or [{} for _ in texts] column_names[colmap_["metadata"]] = map(json.dumps, metadatas) assert len(set(colmap_) - set(column_names)) >= 0 keys, values = zip(*column_names.items()) try: t = None for v in self.pgbar( zip(*values), desc="Inserting data...", total=len(metadatas) ): assert len(v[keys.index(self.config.column_map["vector"])]) == self.dim transac.append(v) if len(transac) == batch_size: if t: t.join() t = Thread(target=self._insert, args=[transac, keys]) t.start() transac = [] if len(transac) > 0: if t: t.join() self._insert(transac, keys) return [i for i in ids] except Exception as e: logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m") return []
[docs] @classmethod def from_texts( cls, texts: Iterable[str], embedding: Embeddings, metadatas: Optional[List[Dict[Any, Any]]] = None, config: Optional[MyScaleSettings] = None, text_ids: Optional[Iterable[str]] = None, batch_size: int = 32, **kwargs: Any, ) -> MyScale: """Create Myscale wrapper with existing texts Args: texts (Iterable[str]): List or tuple of strings to be added embedding (Embeddings): Function to extract text embedding config (MyScaleSettings, Optional): Myscale configuration text_ids (Optional[Iterable], optional): IDs for the texts. Defaults to None. batch_size (int, optional): Batchsize when transmitting data to MyScale. Defaults to 32. metadata (List[dict], optional): metadata to texts. Defaults to None. Other keyword arguments will pass into [clickhouse-connect](https://clickhouse.com/docs/en/integrations/python#clickhouse-connect-driver-api) Returns: MyScale Index """ ctx = cls(embedding, config, **kwargs) ctx.add_texts(texts, ids=text_ids, batch_size=batch_size, metadatas=metadatas) return ctx
def __repr__(self) -> str: """Text representation for myscale, prints backends, username and schemas. Easy to use with `str(Myscale())` Returns: repr: string to show connection info and data schema """ _repr = f"\033[92m\033[1m{self.config.database}.{self.config.table} @ " _repr += f"{self.config.host}:{self.config.port}\033[0m\n\n" _repr += f"\033[1musername: {self.config.username}\033[0m\n\nTable Schema:\n" _repr += "-" * 51 + "\n" for r in self.client.query( f"DESC {self.config.database}.{self.config.table}" ).named_results(): _repr += ( f"|\033[94m{r['name']:24s}\033[0m|\033[96m{r['type']:24s}\033[0m|\n" ) _repr += "-" * 51 + "\n" return _repr def _build_qstr( self, q_emb: List[float], topk: int, where_str: Optional[str] = None ) -> str: q_emb_str = ",".join(map(str, q_emb)) if where_str: where_str = f"PREWHERE {where_str}" else: where_str = "" q_str = f""" SELECT {self.config.column_map['text']}, {self.config.column_map['metadata']}, dist FROM {self.config.database}.{self.config.table} {where_str} ORDER BY distance({self.config.column_map['vector']}, [{q_emb_str}]) AS dist {self.dist_order} LIMIT {topk} """ return q_str
[docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, where_str: Optional[str] = None, **kwargs: Any, ) -> List[Document]: """Perform a similarity search with MyScale by vectors Args: query (str): query string k (int, optional): Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional): where condition string. Defaults to None. NOTE: Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use `{self.metadata_column}.attribute` instead of `attribute` alone. The default name for it is `metadata`. Returns: List[Document]: List of (Document, similarity) """ q_str = self._build_qstr(embedding, k, where_str) try: return [ Document( page_content=r[self.config.column_map["text"]], metadata=r[self.config.column_map["metadata"]], ) for r in self.client.query(q_str).named_results() ] except Exception as e: logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m") return []
[docs] def similarity_search_with_relevance_scores( self, query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any ) -> List[Tuple[Document, float]]: """Perform a similarity search with MyScale Args: query (str): query string k (int, optional): Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional): where condition string. Defaults to None. NOTE: Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use `{self.metadata_column}.attribute` instead of `attribute` alone. The default name for it is `metadata`. Returns: List[Document]: List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity. """ q_str = self._build_qstr(self._embeddings.embed_query(query), k, where_str) try: return [ ( Document( page_content=r[self.config.column_map["text"]], metadata=r[self.config.column_map["metadata"]], ), r["dist"], ) for r in self.client.query(q_str).named_results() ] except Exception as e: logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m") return []
[docs] def drop(self) -> None: """ Helper function: Drop data """ self.client.command( f"DROP TABLE IF EXISTS {self.config.database}.{self.config.table}" )
[docs] def delete( self, ids: Optional[List[str]] = None, where_str: Optional[str] = None, **kwargs: Any, ) -> Optional[bool]: """Delete by vector ID or other criteria. Args: ids: List of ids to delete. **kwargs: Other keyword arguments that subclasses might use. Returns: Optional[bool]: True if deletion is successful, False otherwise, None if not implemented. """ assert not ( ids is None and where_str is None ), "You need to specify where to be deleted! Either with `ids` or `where_str`" conds = [] if ids and len(ids) > 0: id_list = ", ".join([f"'{id}'" for id in ids]) conds.append(f"{self.config.column_map['id']} IN ({id_list})") if where_str: conds.append(where_str) assert len(conds) > 0 where_str_final = " AND ".join(conds) qstr = ( f"DELETE FROM {self.config.database}.{self.config.table} " f"WHERE {where_str_final}" ) try: self.client.command(qstr) return True except Exception as e: logger.error(str(e)) return False
@property def metadata_column(self) -> str: return self.config.column_map["metadata"]
[docs] class MyScaleWithoutJSON(MyScale): """MyScale vector store without metadata column This is super handy if you are working to a SQL-native table """
[docs] def __init__( self, embedding: Embeddings, config: Optional[MyScaleSettings] = None, must_have_cols: List[str] = [], **kwargs: Any, ) -> None: """Building a myscale vector store without metadata column embedding (Embeddings): embedding model config (MyScaleSettings): Configuration to MyScale Client must_have_cols (List[str]): column names to be included in query Other keyword arguments will pass into [clickhouse-connect](https://docs.myscale.com/) """ super().__init__(embedding, config, **kwargs) self.must_have_cols: List[str] = must_have_cols
def _build_qstr( self, q_emb: List[float], topk: int, where_str: Optional[str] = None ) -> str: q_emb_str = ",".join(map(str, q_emb)) if where_str: where_str = f"PREWHERE {where_str}" else: where_str = "" q_str = f""" SELECT {self.config.column_map['text']}, dist, {','.join(self.must_have_cols)} FROM {self.config.database}.{self.config.table} {where_str} ORDER BY distance({self.config.column_map['vector']}, [{q_emb_str}]) AS dist {self.dist_order} LIMIT {topk} """ return q_str
[docs] def similarity_search_by_vector( self, embedding: List[float], k: int = 4, where_str: Optional[str] = None, **kwargs: Any, ) -> List[Document]: """Perform a similarity search with MyScale by vectors Args: query (str): query string k (int, optional): Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional): where condition string. Defaults to None. NOTE: Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use `{self.metadata_column}.attribute` instead of `attribute` alone. The default name for it is `metadata`. Returns: List[Document]: List of (Document, similarity) """ q_str = self._build_qstr(embedding, k, where_str) try: return [ Document( page_content=r[self.config.column_map["text"]], metadata={k: r[k] for k in self.must_have_cols}, ) for r in self.client.query(q_str).named_results() ] except Exception as e: logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m") return []
[docs] def similarity_search_with_relevance_scores( self, query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any ) -> List[Tuple[Document, float]]: """Perform a similarity search with MyScale Args: query (str): query string k (int, optional): Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional): where condition string. Defaults to None. NOTE: Please do not let end-user to fill this and always be aware of SQL injection. When dealing with metadatas, remember to use `{self.metadata_column}.attribute` instead of `attribute` alone. The default name for it is `metadata`. Returns: List[Document]: List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity. """ q_str = self._build_qstr(self._embeddings.embed_query(query), k, where_str) try: return [ ( Document( page_content=r[self.config.column_map["text"]], metadata={k: r[k] for k in self.must_have_cols}, ), r["dist"], ) for r in self.client.query(q_str).named_results() ] except Exception as e: logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m") return []
@property def metadata_column(self) -> str: return ""