langchain_community.vectorstores.vlite ηš„ζΊδ»£η 

from __future__ import annotations

# Standard library imports
from typing import Any, Dict, Iterable, List, Optional, Tuple
from uuid import uuid4

# LangChain imports
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore


[docs] class VLite(VectorStore): """VLite is a simple and fast vector database for semantic search."""
[docs] def __init__( self, embedding_function: Embeddings, collection: Optional[str] = None, **kwargs: Any, ): super().__init__() self.embedding_function = embedding_function self.collection = collection or f"vlite_{uuid4().hex}" # Third-party imports try: from vlite import VLite except ImportError: raise ImportError( "Could not import vlite python package. " "Please install it with `pip install vlite`." ) self.vlite = VLite(collection=self.collection, **kwargs)
[docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any, ) -> List[str]: """Run more texts through the embeddings and add to the vectorstore. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. kwargs: vectorstore specific parameters Returns: List of ids from adding the texts into the vectorstore. """ texts = list(texts) ids = kwargs.pop("ids", [str(uuid4()) for _ in texts]) embeddings = self.embedding_function.embed_documents(texts) if not metadatas: metadatas = [{} for _ in texts] data_points = [ {"text": text, "metadata": metadata, "id": id, "embedding": embedding} for text, metadata, id, embedding in zip(texts, metadatas, ids, embeddings) ] results = self.vlite.add(data_points) return [result[0] for result in results]
[docs] def add_documents( self, documents: List[Document], **kwargs: Any, ) -> List[str]: """Add a list of documents to the vectorstore. Args: documents: List of documents to add to the vectorstore. kwargs: vectorstore specific parameters such as "file_path" for processing directly with vlite. Returns: List of ids from adding the documents into the vectorstore. """ ids = kwargs.pop("ids", [str(uuid4()) for _ in documents]) texts = [] metadatas = [] for doc, id in zip(documents, ids): if "file_path" in kwargs: # Third-party imports try: from vlite.utils import process_file except ImportError: raise ImportError( "Could not import vlite python package. " "Please install it with `pip install vlite`." ) processed_data = process_file(kwargs["file_path"]) texts.extend(processed_data) metadatas.extend([doc.metadata] * len(processed_data)) ids.extend([f"{id}_{i}" for i in range(len(processed_data))]) else: texts.append(doc.page_content) metadatas.append(doc.metadata) return self.add_texts(texts, metadatas, ids=ids)
[docs] def similarity_search_with_score( self, query: str, k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Return docs most similar to query. Args: query: Text to look up documents similar to. k: Number of Documents to return. Defaults to 4. filter: Filter by metadata. Defaults to None. Returns: List of Tuples of (doc, score), where score is the similarity score. """ metadata = filter or {} embedding = self.embedding_function.embed_query(query) results = self.vlite.retrieve( text=query, top_k=k, metadata=metadata, return_scores=True, embedding=embedding, ) documents_with_scores = [ (Document(page_content=text, metadata=metadata), score) for text, score, metadata in results ] return documents_with_scores
[docs] def update_document(self, document_id: str, document: Document) -> None: """Update an existing document in the vectorstore.""" self.vlite.update( document_id, text=document.page_content, metadata=document.metadata )
[docs] def get(self, ids: List[str]) -> List[Document]: """Get documents by their IDs.""" results = self.vlite.get(ids) documents = [ Document(page_content=text, metadata=metadata) for text, metadata in results ] return documents
[docs] def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]: """Delete by ids.""" if ids is not None: self.vlite.delete(ids, **kwargs) return True return None
[docs] @classmethod def from_existing_index( cls, embedding: Embeddings, collection: str, **kwargs: Any, ) -> VLite: """Load an existing VLite index. Args: embedding: Embedding function collection: Name of the collection to load. Returns: VLite vector store. """ vlite = cls(embedding_function=embedding, collection=collection, **kwargs) return vlite
[docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection: Optional[str] = None, **kwargs: Any, ) -> VLite: """Construct VLite wrapper from raw documents. This is a user-friendly interface that: 1. Embeds documents. 2. Adds the documents to the vectorstore. This is intended to be a quick way to get started. Example: .. code-block:: python from langchain import VLite from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vlite = VLite.from_texts(texts, embeddings) """ vlite = cls(embedding_function=embedding, collection=collection, **kwargs) vlite.add_texts(texts, metadatas, **kwargs) return vlite
[docs] @classmethod def from_documents( cls, documents: List[Document], embedding: Embeddings, collection: Optional[str] = None, **kwargs: Any, ) -> VLite: """Construct VLite wrapper from a list of documents. This is a user-friendly interface that: 1. Embeds documents. 2. Adds the documents to the vectorstore. This is intended to be a quick way to get started. Example: .. code-block:: python from langchain import VLite from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() vlite = VLite.from_documents(documents, embeddings) """ vlite = cls(embedding_function=embedding, collection=collection, **kwargs) vlite.add_documents(documents, **kwargs) return vlite