langchain_core.documents.compressor ηš„ζΊδ»£η 

from __future__ import annotations

from abc import ABC, abstractmethod
from collections.abc import Sequence
from typing import Optional

from pydantic import BaseModel

from langchain_core.callbacks import Callbacks
from langchain_core.documents import Document
from langchain_core.runnables import run_in_executor


[docs] class BaseDocumentCompressor(BaseModel, ABC): """Base class for document compressors. This abstraction is primarily used for post-processing of retrieved documents. Documents matching a given query are first retrieved. Then the list of documents can be further processed. For example, one could re-rank the retrieved documents using an LLM. **Note** users should favor using a RunnableLambda instead of sub-classing from this interface. """
[docs] @abstractmethod def compress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """Compress retrieved documents given the query context. Args: documents: The retrieved documents. query: The query context. callbacks: Optional callbacks to run during compression. Returns: The compressed documents. """
[docs] async def acompress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """Async compress retrieved documents given the query context. Args: documents: The retrieved documents. query: The query context. callbacks: Optional callbacks to run during compression. Returns: The compressed documents. """ return await run_in_executor( None, self.compress_documents, documents, query, callbacks )