langchain_core.documents.compressor ηζΊδ»£η
from __future__ import annotations
from abc import ABC, abstractmethod
from collections.abc import Sequence
from typing import Optional
from pydantic import BaseModel
from langchain_core.callbacks import Callbacks
from langchain_core.documents import Document
from langchain_core.runnables import run_in_executor
[docs]
class BaseDocumentCompressor(BaseModel, ABC):
"""Base class for document compressors.
This abstraction is primarily used for
post-processing of retrieved documents.
Documents matching a given query are first retrieved.
Then the list of documents can be further processed.
For example, one could re-rank the retrieved documents
using an LLM.
**Note** users should favor using a RunnableLambda
instead of sub-classing from this interface.
"""
[docs]
@abstractmethod
def compress_documents(
self,
documents: Sequence[Document],
query: str,
callbacks: Optional[Callbacks] = None,
) -> Sequence[Document]:
"""Compress retrieved documents given the query context.
Args:
documents: The retrieved documents.
query: The query context.
callbacks: Optional callbacks to run during compression.
Returns:
The compressed documents.
"""
[docs]
async def acompress_documents(
self,
documents: Sequence[Document],
query: str,
callbacks: Optional[Callbacks] = None,
) -> Sequence[Document]:
"""Async compress retrieved documents given the query context.
Args:
documents: The retrieved documents.
query: The query context.
callbacks: Optional callbacks to run during compression.
Returns:
The compressed documents.
"""
return await run_in_executor(
None, self.compress_documents, documents, query, callbacks
)