langchain_core.prompts.base ηš„ζΊδ»£η 

from __future__ import annotations

import contextlib
import json
import typing
from abc import ABC, abstractmethod
from collections.abc import Mapping
from functools import cached_property
from pathlib import Path
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Generic,
    Optional,
    TypeVar,
    Union,
)

import yaml
from pydantic import BaseModel, ConfigDict, Field, model_validator
from typing_extensions import Self, override

from langchain_core.exceptions import ErrorCode, create_message
from langchain_core.load import dumpd
from langchain_core.output_parsers.base import BaseOutputParser
from langchain_core.prompt_values import (
    ChatPromptValueConcrete,
    PromptValue,
    StringPromptValue,
)
from langchain_core.runnables import RunnableConfig, RunnableSerializable
from langchain_core.runnables.config import ensure_config
from langchain_core.utils.pydantic import create_model_v2

if TYPE_CHECKING:
    from langchain_core.documents import Document


FormatOutputType = TypeVar("FormatOutputType")


[docs] class BasePromptTemplate( RunnableSerializable[dict, PromptValue], Generic[FormatOutputType], ABC ): """Base class for all prompt templates, returning a prompt.""" input_variables: list[str] """A list of the names of the variables whose values are required as inputs to the prompt.""" optional_variables: list[str] = Field(default=[]) """optional_variables: A list of the names of the variables for placeholder or MessagePlaceholder that are optional. These variables are auto inferred from the prompt and user need not provide them.""" input_types: typing.Dict[str, Any] = Field(default_factory=dict, exclude=True) # noqa: UP006 """A dictionary of the types of the variables the prompt template expects. If not provided, all variables are assumed to be strings.""" output_parser: Optional[BaseOutputParser] = None """How to parse the output of calling an LLM on this formatted prompt.""" partial_variables: Mapping[str, Any] = Field(default_factory=dict) """A dictionary of the partial variables the prompt template carries. Partial variables populate the template so that you don't need to pass them in every time you call the prompt.""" metadata: Optional[typing.Dict[str, Any]] = None # noqa: UP006 """Metadata to be used for tracing.""" tags: Optional[list[str]] = None """Tags to be used for tracing.""" @model_validator(mode="after") def validate_variable_names(self) -> Self: """Validate variable names do not include restricted names.""" if "stop" in self.input_variables: msg = ( "Cannot have an input variable named 'stop', as it is used internally," " please rename." ) raise ValueError( create_message(message=msg, error_code=ErrorCode.INVALID_PROMPT_INPUT) ) if "stop" in self.partial_variables: msg = ( "Cannot have an partial variable named 'stop', as it is used " "internally, please rename." ) raise ValueError( create_message(message=msg, error_code=ErrorCode.INVALID_PROMPT_INPUT) ) overall = set(self.input_variables).intersection(self.partial_variables) if overall: msg = f"Found overlapping input and partial variables: {overall}" raise ValueError( create_message(message=msg, error_code=ErrorCode.INVALID_PROMPT_INPUT) ) return self @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object. Returns ["langchain", "schema", "prompt_template"].""" return ["langchain", "schema", "prompt_template"] @classmethod def is_lc_serializable(cls) -> bool: """Return whether this class is serializable. Returns True.""" return True model_config = ConfigDict( arbitrary_types_allowed=True, ) @cached_property def _serialized(self) -> dict[str, Any]: return dumpd(self) @property @override def OutputType(self) -> Any: """Return the output type of the prompt.""" return Union[StringPromptValue, ChatPromptValueConcrete] def get_input_schema( self, config: Optional[RunnableConfig] = None ) -> type[BaseModel]: """Get the input schema for the prompt. Args: config: RunnableConfig, configuration for the prompt. Returns: Type[BaseModel]: The input schema for the prompt. """ # This is correct, but pydantic typings/mypy don't think so. required_input_variables = { k: (self.input_types.get(k, str), ...) for k in self.input_variables } optional_input_variables = { k: (self.input_types.get(k, str), None) for k in self.optional_variables } return create_model_v2( "PromptInput", field_definitions={**required_input_variables, **optional_input_variables}, ) def _validate_input(self, inner_input: Any) -> dict: if not isinstance(inner_input, dict): if len(self.input_variables) == 1: var_name = self.input_variables[0] inner_input = {var_name: inner_input} else: msg = ( f"Expected mapping type as input to {self.__class__.__name__}. " f"Received {type(inner_input)}." ) raise TypeError( create_message( message=msg, error_code=ErrorCode.INVALID_PROMPT_INPUT ) ) missing = set(self.input_variables).difference(inner_input) if missing: msg = ( f"Input to {self.__class__.__name__} is missing variables {missing}. " f" Expected: {self.input_variables}" f" Received: {list(inner_input.keys())}" ) example_key = missing.pop() msg += ( f"\nNote: if you intended {{{example_key}}} to be part of the string" " and not a variable, please escape it with double curly braces like: " f"'{{{{{example_key}}}}}'." ) raise KeyError( create_message(message=msg, error_code=ErrorCode.INVALID_PROMPT_INPUT) ) return inner_input def _format_prompt_with_error_handling(self, inner_input: dict) -> PromptValue: _inner_input = self._validate_input(inner_input) return self.format_prompt(**_inner_input) async def _aformat_prompt_with_error_handling( self, inner_input: dict ) -> PromptValue: _inner_input = self._validate_input(inner_input) return await self.aformat_prompt(**_inner_input)
[docs] def invoke( self, input: dict, config: Optional[RunnableConfig] = None, **kwargs: Any ) -> PromptValue: """Invoke the prompt. Args: input: Dict, input to the prompt. config: RunnableConfig, configuration for the prompt. Returns: PromptValue: The output of the prompt. """ config = ensure_config(config) if self.metadata: config["metadata"] = {**config["metadata"], **self.metadata} if self.tags: config["tags"] = config["tags"] + self.tags return self._call_with_config( self._format_prompt_with_error_handling, input, config, run_type="prompt", serialized=self._serialized, )
[docs] async def ainvoke( self, input: dict, config: Optional[RunnableConfig] = None, **kwargs: Any ) -> PromptValue: """Async invoke the prompt. Args: input: Dict, input to the prompt. config: RunnableConfig, configuration for the prompt. Returns: PromptValue: The output of the prompt. """ config = ensure_config(config) if self.metadata: config["metadata"].update(self.metadata) if self.tags: config["tags"].extend(self.tags) return await self._acall_with_config( self._aformat_prompt_with_error_handling, input, config, run_type="prompt", serialized=self._serialized, )
[docs] @abstractmethod def format_prompt(self, **kwargs: Any) -> PromptValue: """Create Prompt Value. Args: kwargs: Any arguments to be passed to the prompt template. Returns: PromptValue: The output of the prompt. """
[docs] async def aformat_prompt(self, **kwargs: Any) -> PromptValue: """Async create Prompt Value. Args: kwargs: Any arguments to be passed to the prompt template. Returns: PromptValue: The output of the prompt. """ return self.format_prompt(**kwargs)
[docs] def partial(self, **kwargs: Union[str, Callable[[], str]]) -> BasePromptTemplate: """Return a partial of the prompt template. Args: kwargs: Union[str, Callable[[], str]], partial variables to set. Returns: BasePromptTemplate: A partial of the prompt template. """ prompt_dict = self.__dict__.copy() prompt_dict["input_variables"] = list( set(self.input_variables).difference(kwargs) ) prompt_dict["partial_variables"] = {**self.partial_variables, **kwargs} return type(self)(**prompt_dict)
def _merge_partial_and_user_variables(self, **kwargs: Any) -> dict[str, Any]: # Get partial params: partial_kwargs = { k: v if not callable(v) else v() for k, v in self.partial_variables.items() } return {**partial_kwargs, **kwargs}
[docs] @abstractmethod def format(self, **kwargs: Any) -> FormatOutputType: """Format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. Example: .. code-block:: python prompt.format(variable1="foo") """
[docs] async def aformat(self, **kwargs: Any) -> FormatOutputType: """Async format the prompt with the inputs. Args: kwargs: Any arguments to be passed to the prompt template. Returns: A formatted string. Example: .. code-block:: python await prompt.aformat(variable1="foo") """ return self.format(**kwargs)
@property def _prompt_type(self) -> str: """Return the prompt type key.""" raise NotImplementedError def dict(self, **kwargs: Any) -> dict: """Return dictionary representation of prompt. Args: kwargs: Any additional arguments to pass to the dictionary. Returns: Dict: Dictionary representation of the prompt. Raises: NotImplementedError: If the prompt type is not implemented. """ prompt_dict = super().model_dump(**kwargs) with contextlib.suppress(NotImplementedError): prompt_dict["_type"] = self._prompt_type return prompt_dict
[docs] def save(self, file_path: Union[Path, str]) -> None: """Save the prompt. Args: file_path: Path to directory to save prompt to. Raises: ValueError: If the prompt has partial variables. ValueError: If the file path is not json or yaml. NotImplementedError: If the prompt type is not implemented. Example: .. code-block:: python prompt.save(file_path="path/prompt.yaml") """ if self.partial_variables: msg = "Cannot save prompt with partial variables." raise ValueError(msg) # Fetch dictionary to save prompt_dict = self.dict() if "_type" not in prompt_dict: msg = f"Prompt {self} does not support saving." raise NotImplementedError(msg) # Convert file to Path object. save_path = Path(file_path) if isinstance(file_path, str) else file_path directory_path = save_path.parent directory_path.mkdir(parents=True, exist_ok=True) if save_path.suffix == ".json": with open(file_path, "w") as f: json.dump(prompt_dict, f, indent=4) elif save_path.suffix.endswith((".yaml", ".yml")): with open(file_path, "w") as f: yaml.dump(prompt_dict, f, default_flow_style=False) else: msg = f"{save_path} must be json or yaml" raise ValueError(msg)
def _get_document_info(doc: Document, prompt: BasePromptTemplate[str]) -> dict: base_info = {"page_content": doc.page_content, **doc.metadata} missing_metadata = set(prompt.input_variables).difference(base_info) if len(missing_metadata) > 0: required_metadata = [ iv for iv in prompt.input_variables if iv != "page_content" ] msg = ( f"Document prompt requires documents to have metadata variables: " f"{required_metadata}. Received document with missing metadata: " f"{list(missing_metadata)}." ) raise ValueError( create_message(message=msg, error_code=ErrorCode.INVALID_PROMPT_INPUT) ) return {k: base_info[k] for k in prompt.input_variables}
[docs] def format_document(doc: Document, prompt: BasePromptTemplate[str]) -> str: """Format a document into a string based on a prompt template. First, this pulls information from the document from two sources: 1. page_content: This takes the information from the `document.page_content` and assigns it to a variable named `page_content`. 2. metadata: This takes information from `document.metadata` and assigns it to variables of the same name. Those variables are then passed into the `prompt` to produce a formatted string. Args: doc: Document, the page_content and metadata will be used to create the final string. prompt: BasePromptTemplate, will be used to format the page_content and metadata into the final string. Returns: string of the document formatted. Example: .. code-block:: python from langchain_core.documents import Document from langchain_core.prompts import PromptTemplate doc = Document(page_content="This is a joke", metadata={"page": "1"}) prompt = PromptTemplate.from_template("Page {page}: {page_content}") format_document(doc, prompt) >>> "Page 1: This is a joke" """ return prompt.format(**_get_document_info(doc, prompt))
[docs] async def aformat_document(doc: Document, prompt: BasePromptTemplate[str]) -> str: """Async format a document into a string based on a prompt template. First, this pulls information from the document from two sources: 1. page_content: This takes the information from the `document.page_content` and assigns it to a variable named `page_content`. 2. metadata: This takes information from `document.metadata` and assigns it to variables of the same name. Those variables are then passed into the `prompt` to produce a formatted string. Args: doc: Document, the page_content and metadata will be used to create the final string. prompt: BasePromptTemplate, will be used to format the page_content and metadata into the final string. Returns: string of the document formatted. """ return await prompt.aformat(**_get_document_info(doc, prompt))