langchain_core.prompts.chat ηš„ζΊδ»£η 

"""Chat prompt template."""

from __future__ import annotations

from abc import ABC, abstractmethod
from collections.abc import Sequence
from pathlib import Path
from typing import (
    Annotated,
    Any,
    Optional,
    TypedDict,
    TypeVar,
    Union,
    cast,
    overload,
)

from pydantic import (
    Field,
    PositiveInt,
    SkipValidation,
    model_validator,
)

from langchain_core._api import deprecated
from langchain_core.load import Serializable
from langchain_core.messages import (
    AIMessage,
    AnyMessage,
    BaseMessage,
    ChatMessage,
    HumanMessage,
    SystemMessage,
    convert_to_messages,
)
from langchain_core.messages.base import get_msg_title_repr
from langchain_core.prompt_values import ChatPromptValue, ImageURL, PromptValue
from langchain_core.prompts.base import BasePromptTemplate
from langchain_core.prompts.image import ImagePromptTemplate
from langchain_core.prompts.prompt import PromptTemplate
from langchain_core.prompts.string import (
    PromptTemplateFormat,
    StringPromptTemplate,
    get_template_variables,
)
from langchain_core.utils import get_colored_text
from langchain_core.utils.interactive_env import is_interactive_env


[docs] class BaseMessagePromptTemplate(Serializable, ABC): """Base class for message prompt templates.""" @classmethod def is_lc_serializable(cls) -> bool: """Return whether or not the class is serializable. Returns: True""" return True @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "chat"]
[docs] @abstractmethod def format_messages(self, **kwargs: Any) -> list[BaseMessage]: """Format messages from kwargs. Should return a list of BaseMessages. Args: **kwargs: Keyword arguments to use for formatting. Returns: List of BaseMessages. """
[docs] async def aformat_messages(self, **kwargs: Any) -> list[BaseMessage]: """Async format messages from kwargs. Should return a list of BaseMessages. Args: **kwargs: Keyword arguments to use for formatting. Returns: List of BaseMessages. """ return self.format_messages(**kwargs)
@property @abstractmethod def input_variables(self) -> list[str]: """Input variables for this prompt template. Returns: List of input variables. """
[docs] def pretty_repr(self, html: bool = False) -> str: """Human-readable representation. Args: html: Whether to format as HTML. Defaults to False. Returns: Human-readable representation. """ raise NotImplementedError
[docs] def pretty_print(self) -> None: """Print a human-readable representation.""" print(self.pretty_repr(html=is_interactive_env())) # noqa: T201
def __add__(self, other: Any) -> ChatPromptTemplate: """Combine two prompt templates. Args: other: Another prompt template. Returns: Combined prompt template. """ prompt = ChatPromptTemplate(messages=[self]) # type: ignore[call-arg] return prompt + other
[docs] class MessagesPlaceholder(BaseMessagePromptTemplate): """Prompt template that assumes variable is already list of messages. A placeholder which can be used to pass in a list of messages. Direct usage: .. code-block:: python from langchain_core.prompts import MessagesPlaceholder prompt = MessagesPlaceholder("history") prompt.format_messages() # raises KeyError prompt = MessagesPlaceholder("history", optional=True) prompt.format_messages() # returns empty list [] prompt.format_messages( history=[ ("system", "You are an AI assistant."), ("human", "Hello!"), ] ) # -> [ # SystemMessage(content="You are an AI assistant."), # HumanMessage(content="Hello!"), # ] Building a prompt with chat history: .. code-block:: python from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder prompt = ChatPromptTemplate.from_messages( [ ("system", "You are a helpful assistant."), MessagesPlaceholder("history"), ("human", "{question}") ] ) prompt.invoke( { "history": [("human", "what's 5 + 2"), ("ai", "5 + 2 is 7")], "question": "now multiply that by 4" } ) # -> ChatPromptValue(messages=[ # SystemMessage(content="You are a helpful assistant."), # HumanMessage(content="what's 5 + 2"), # AIMessage(content="5 + 2 is 7"), # HumanMessage(content="now multiply that by 4"), # ]) Limiting the number of messages: .. code-block:: python from langchain_core.prompts import MessagesPlaceholder prompt = MessagesPlaceholder("history", n_messages=1) prompt.format_messages( history=[ ("system", "You are an AI assistant."), ("human", "Hello!"), ] ) # -> [ # HumanMessage(content="Hello!"), # ] """ variable_name: str """Name of variable to use as messages.""" optional: bool = False """If True format_messages can be called with no arguments and will return an empty list. If False then a named argument with name `variable_name` must be passed in, even if the value is an empty list.""" n_messages: Optional[PositiveInt] = None """Maximum number of messages to include. If None, then will include all. Defaults to None.""" @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "chat"] def __init__( self, variable_name: str, *, optional: bool = False, **kwargs: Any ) -> None: # mypy can't detect the init which is defined in the parent class # b/c these are BaseModel classes. super().__init__( # type: ignore variable_name=variable_name, optional=optional, **kwargs )
[docs] def format_messages(self, **kwargs: Any) -> list[BaseMessage]: """Format messages from kwargs. Args: **kwargs: Keyword arguments to use for formatting. Returns: List of BaseMessage. Raises: ValueError: If variable is not a list of messages. """ value = ( kwargs.get(self.variable_name, []) if self.optional else kwargs[self.variable_name] ) if not isinstance(value, list): msg = ( f"variable {self.variable_name} should be a list of base messages, " f"got {value} of type {type(value)}" ) raise ValueError(msg) value = convert_to_messages(value) if self.n_messages: value = value[-self.n_messages :] return value
@property def input_variables(self) -> list[str]: """Input variables for this prompt template. Returns: List of input variable names. """ return [self.variable_name] if not self.optional else []
[docs] def pretty_repr(self, html: bool = False) -> str: """Human-readable representation. Args: html: Whether to format as HTML. Defaults to False. Returns: Human-readable representation. """ var = "{" + self.variable_name + "}" if html: title = get_msg_title_repr("Messages Placeholder", bold=True) var = get_colored_text(var, "yellow") else: title = get_msg_title_repr("Messages Placeholder") return f"{title}\n\n{var}"
MessagePromptTemplateT = TypeVar( "MessagePromptTemplateT", bound="BaseStringMessagePromptTemplate" ) """Type variable for message prompt templates."""
[docs] class BaseStringMessagePromptTemplate(BaseMessagePromptTemplate, ABC): """Base class for message prompt templates that use a string prompt template.""" prompt: StringPromptTemplate """String prompt template.""" additional_kwargs: dict = Field(default_factory=dict) """Additional keyword arguments to pass to the prompt template.""" @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "chat"]
[docs] @classmethod def from_template( cls: type[MessagePromptTemplateT], template: str, template_format: PromptTemplateFormat = "f-string", partial_variables: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> MessagePromptTemplateT: """Create a class from a string template. Args: template: a template. template_format: format of the template. Defaults to "f-string". partial_variables: A dictionary of variables that can be used to partially fill in the template. For example, if the template is `"{variable1} {variable2}"`, and `partial_variables` is `{"variable1": "foo"}`, then the final prompt will be `"foo {variable2}"`. Defaults to None. **kwargs: keyword arguments to pass to the constructor. Returns: A new instance of this class. """ prompt = PromptTemplate.from_template( template, template_format=template_format, partial_variables=partial_variables, ) return cls(prompt=prompt, **kwargs)
[docs] @classmethod def from_template_file( cls: type[MessagePromptTemplateT], template_file: Union[str, Path], input_variables: list[str], **kwargs: Any, ) -> MessagePromptTemplateT: """Create a class from a template file. Args: template_file: path to a template file. String or Path. input_variables: list of input variables. **kwargs: keyword arguments to pass to the constructor. Returns: A new instance of this class. """ prompt = PromptTemplate.from_file(template_file, input_variables) return cls(prompt=prompt, **kwargs)
[docs] @abstractmethod def format(self, **kwargs: Any) -> BaseMessage: """Format the prompt template. Args: **kwargs: Keyword arguments to use for formatting. Returns: Formatted message. """
[docs] async def aformat(self, **kwargs: Any) -> BaseMessage: """Async format the prompt template. Args: **kwargs: Keyword arguments to use for formatting. Returns: Formatted message. """ return self.format(**kwargs)
[docs] def format_messages(self, **kwargs: Any) -> list[BaseMessage]: """Format messages from kwargs. Args: **kwargs: Keyword arguments to use for formatting. Returns: List of BaseMessages. """ return [self.format(**kwargs)]
[docs] async def aformat_messages(self, **kwargs: Any) -> list[BaseMessage]: """Async format messages from kwargs. Args: **kwargs: Keyword arguments to use for formatting. Returns: List of BaseMessages. """ return [await self.aformat(**kwargs)]
@property def input_variables(self) -> list[str]: """ Input variables for this prompt template. Returns: List of input variable names. """ return self.prompt.input_variables
[docs] def pretty_repr(self, html: bool = False) -> str: """Human-readable representation. Args: html: Whether to format as HTML. Defaults to False. Returns: Human-readable representation. """ # TODO: Handle partials title = self.__class__.__name__.replace("MessagePromptTemplate", " Message") title = get_msg_title_repr(title, bold=html) return f"{title}\n\n{self.prompt.pretty_repr(html=html)}"
[docs] class ChatMessagePromptTemplate(BaseStringMessagePromptTemplate): """Chat message prompt template.""" role: str """Role of the message.""" @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "chat"]
[docs] def format(self, **kwargs: Any) -> BaseMessage: """Format the prompt template. Args: **kwargs: Keyword arguments to use for formatting. Returns: Formatted message. """ text = self.prompt.format(**kwargs) return ChatMessage( content=text, role=self.role, additional_kwargs=self.additional_kwargs )
[docs] async def aformat(self, **kwargs: Any) -> BaseMessage: """Async format the prompt template. Args: **kwargs: Keyword arguments to use for formatting. Returns: Formatted message. """ text = await self.prompt.aformat(**kwargs) return ChatMessage( content=text, role=self.role, additional_kwargs=self.additional_kwargs )
_StringImageMessagePromptTemplateT = TypeVar( "_StringImageMessagePromptTemplateT", bound="_StringImageMessagePromptTemplate" ) class _TextTemplateParam(TypedDict, total=False): text: Union[str, dict] class _ImageTemplateParam(TypedDict, total=False): image_url: Union[str, dict] class _StringImageMessagePromptTemplate(BaseMessagePromptTemplate): """Human message prompt template. This is a message sent from the user.""" prompt: Union[ StringPromptTemplate, list[Union[StringPromptTemplate, ImagePromptTemplate]] ] """Prompt template.""" additional_kwargs: dict = Field(default_factory=dict) """Additional keyword arguments to pass to the prompt template.""" _msg_class: type[BaseMessage] @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "chat"] @classmethod def from_template( cls: type[_StringImageMessagePromptTemplateT], template: Union[str, list[Union[str, _TextTemplateParam, _ImageTemplateParam]]], template_format: PromptTemplateFormat = "f-string", *, partial_variables: Optional[dict[str, Any]] = None, **kwargs: Any, ) -> _StringImageMessagePromptTemplateT: """Create a class from a string template. Args: template: a template. template_format: format of the template. Options are: 'f-string', 'mustache', 'jinja2'. Defaults to "f-string". partial_variables: A dictionary of variables that can be used too partially. Defaults to None. **kwargs: keyword arguments to pass to the constructor. Returns: A new instance of this class. Raises: ValueError: If the template is not a string or list of strings. """ if isinstance(template, str): prompt: Union[StringPromptTemplate, list] = PromptTemplate.from_template( template, template_format=template_format, partial_variables=partial_variables, ) return cls(prompt=prompt, **kwargs) elif isinstance(template, list): if (partial_variables is not None) and len(partial_variables) > 0: msg = "Partial variables are not supported for list of templates." raise ValueError(msg) prompt = [] for tmpl in template: if isinstance(tmpl, str) or isinstance(tmpl, dict) and "text" in tmpl: if isinstance(tmpl, str): text: str = tmpl else: text = cast(_TextTemplateParam, tmpl)["text"] # type: ignore[assignment] prompt.append( PromptTemplate.from_template( text, template_format=template_format ) ) elif isinstance(tmpl, dict) and "image_url" in tmpl: img_template = cast(_ImageTemplateParam, tmpl)["image_url"] input_variables = [] if isinstance(img_template, str): vars = get_template_variables(img_template, template_format) if vars: if len(vars) > 1: msg = ( "Only one format variable allowed per image" f" template.\nGot: {vars}" f"\nFrom: {tmpl}" ) raise ValueError(msg) input_variables = [vars[0]] img_template = {"url": img_template} img_template_obj = ImagePromptTemplate( input_variables=input_variables, template=img_template, template_format=template_format, ) elif isinstance(img_template, dict): img_template = dict(img_template) for key in ["url", "path", "detail"]: if key in img_template: input_variables.extend( get_template_variables( img_template[key], template_format ) ) img_template_obj = ImagePromptTemplate( input_variables=input_variables, template=img_template, template_format=template_format, ) else: msg = f"Invalid image template: {tmpl}" raise ValueError(msg) prompt.append(img_template_obj) else: msg = f"Invalid template: {tmpl}" raise ValueError(msg) return cls(prompt=prompt, **kwargs) else: msg = f"Invalid template: {template}" raise ValueError(msg) @classmethod def from_template_file( cls: type[_StringImageMessagePromptTemplateT], template_file: Union[str, Path], input_variables: list[str], **kwargs: Any, ) -> _StringImageMessagePromptTemplateT: """Create a class from a template file. Args: template_file: path to a template file. String or Path. input_variables: list of input variables. **kwargs: keyword arguments to pass to the constructor. Returns: A new instance of this class. """ with open(str(template_file)) as f: template = f.read() return cls.from_template(template, input_variables=input_variables, **kwargs) def format_messages(self, **kwargs: Any) -> list[BaseMessage]: """Format messages from kwargs. Args: **kwargs: Keyword arguments to use for formatting. Returns: List of BaseMessages. """ return [self.format(**kwargs)] async def aformat_messages(self, **kwargs: Any) -> list[BaseMessage]: """Async format messages from kwargs. Args: **kwargs: Keyword arguments to use for formatting. Returns: List of BaseMessages. """ return [await self.aformat(**kwargs)] @property def input_variables(self) -> list[str]: """ Input variables for this prompt template. Returns: List of input variable names. """ prompts = self.prompt if isinstance(self.prompt, list) else [self.prompt] input_variables = [iv for prompt in prompts for iv in prompt.input_variables] return input_variables def format(self, **kwargs: Any) -> BaseMessage: """Format the prompt template. Args: **kwargs: Keyword arguments to use for formatting. Returns: Formatted message. """ if isinstance(self.prompt, StringPromptTemplate): text = self.prompt.format(**kwargs) return self._msg_class( content=text, additional_kwargs=self.additional_kwargs ) else: content: list = [] for prompt in self.prompt: inputs = {var: kwargs[var] for var in prompt.input_variables} if isinstance(prompt, StringPromptTemplate): formatted: Union[str, ImageURL] = prompt.format(**inputs) content.append({"type": "text", "text": formatted}) elif isinstance(prompt, ImagePromptTemplate): formatted = prompt.format(**inputs) content.append({"type": "image_url", "image_url": formatted}) return self._msg_class( content=content, additional_kwargs=self.additional_kwargs ) async def aformat(self, **kwargs: Any) -> BaseMessage: """Async format the prompt template. Args: **kwargs: Keyword arguments to use for formatting. Returns: Formatted message. """ if isinstance(self.prompt, StringPromptTemplate): text = await self.prompt.aformat(**kwargs) return self._msg_class( content=text, additional_kwargs=self.additional_kwargs ) else: content: list = [] for prompt in self.prompt: inputs = {var: kwargs[var] for var in prompt.input_variables} if isinstance(prompt, StringPromptTemplate): formatted: Union[str, ImageURL] = await prompt.aformat(**inputs) content.append({"type": "text", "text": formatted}) elif isinstance(prompt, ImagePromptTemplate): formatted = await prompt.aformat(**inputs) content.append({"type": "image_url", "image_url": formatted}) return self._msg_class( content=content, additional_kwargs=self.additional_kwargs ) def pretty_repr(self, html: bool = False) -> str: """Human-readable representation. Args: html: Whether to format as HTML. Defaults to False. Returns: Human-readable representation. """ # TODO: Handle partials title = self.__class__.__name__.replace("MessagePromptTemplate", " Message") title = get_msg_title_repr(title, bold=html) prompts = self.prompt if isinstance(self.prompt, list) else [self.prompt] prompt_reprs = "\n\n".join(prompt.pretty_repr(html=html) for prompt in prompts) return f"{title}\n\n{prompt_reprs}"
[docs] class HumanMessagePromptTemplate(_StringImageMessagePromptTemplate): """Human message prompt template. This is a message sent from the user.""" _msg_class: type[BaseMessage] = HumanMessage
[docs] class AIMessagePromptTemplate(_StringImageMessagePromptTemplate): """AI message prompt template. This is a message sent from the AI.""" _msg_class: type[BaseMessage] = AIMessage @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "chat"]
[docs] class SystemMessagePromptTemplate(_StringImageMessagePromptTemplate): """System message prompt template. This is a message that is not sent to the user. """ _msg_class: type[BaseMessage] = SystemMessage @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "chat"]
[docs] class BaseChatPromptTemplate(BasePromptTemplate, ABC): """Base class for chat prompt templates.""" @property def lc_attributes(self) -> dict: """ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. """ return {"input_variables": self.input_variables}
[docs] def format(self, **kwargs: Any) -> str: """Format the chat template into a string. Args: **kwargs: keyword arguments to use for filling in template variables in all the template messages in this chat template. Returns: formatted string. """ return self.format_prompt(**kwargs).to_string()
[docs] async def aformat(self, **kwargs: Any) -> str: """Async format the chat template into a string. Args: **kwargs: keyword arguments to use for filling in template variables in all the template messages in this chat template. Returns: formatted string. """ return (await self.aformat_prompt(**kwargs)).to_string()
[docs] def format_prompt(self, **kwargs: Any) -> PromptValue: """Format prompt. Should return a PromptValue. Args: **kwargs: Keyword arguments to use for formatting. Returns: PromptValue. """ messages = self.format_messages(**kwargs) return ChatPromptValue(messages=messages)
[docs] async def aformat_prompt(self, **kwargs: Any) -> PromptValue: """Async format prompt. Should return a PromptValue. Args: **kwargs: Keyword arguments to use for formatting. Returns: PromptValue. """ messages = await self.aformat_messages(**kwargs) return ChatPromptValue(messages=messages)
[docs] @abstractmethod def format_messages(self, **kwargs: Any) -> list[BaseMessage]: """Format kwargs into a list of messages."""
[docs] async def aformat_messages(self, **kwargs: Any) -> list[BaseMessage]: """Async format kwargs into a list of messages.""" return self.format_messages(**kwargs)
[docs] def pretty_repr(self, html: bool = False) -> str: """Human-readable representation. Args: html: Whether to format as HTML. Defaults to False. Returns: Human-readable representation. """ raise NotImplementedError
[docs] def pretty_print(self) -> None: """Print a human-readable representation.""" print(self.pretty_repr(html=is_interactive_env())) # noqa: T201
MessageLike = Union[BaseMessagePromptTemplate, BaseMessage, BaseChatPromptTemplate] MessageLikeRepresentation = Union[ MessageLike, tuple[ Union[str, type], Union[str, list[dict], list[object]], ], str, ]
[docs] class ChatPromptTemplate(BaseChatPromptTemplate): """Prompt template for chat models. Use to create flexible templated prompts for chat models. Examples: .. versionchanged:: 0.2.24 You can pass any Message-like formats supported by ``ChatPromptTemplate.from_messages()`` directly to ``ChatPromptTemplate()`` init. .. code-block:: python from langchain_core.prompts import ChatPromptTemplate template = ChatPromptTemplate([ ("system", "You are a helpful AI bot. Your name is {name}."), ("human", "Hello, how are you doing?"), ("ai", "I'm doing well, thanks!"), ("human", "{user_input}"), ]) prompt_value = template.invoke( { "name": "Bob", "user_input": "What is your name?" } ) # Output: # ChatPromptValue( # messages=[ # SystemMessage(content='You are a helpful AI bot. Your name is Bob.'), # HumanMessage(content='Hello, how are you doing?'), # AIMessage(content="I'm doing well, thanks!"), # HumanMessage(content='What is your name?') # ] #) Messages Placeholder: .. code-block:: python # In addition to Human/AI/Tool/Function messages, # you can initialize the template with a MessagesPlaceholder # either using the class directly or with the shorthand tuple syntax: template = ChatPromptTemplate([ ("system", "You are a helpful AI bot."), # Means the template will receive an optional list of messages under # the "conversation" key ("placeholder", "{conversation}") # Equivalently: # MessagesPlaceholder(variable_name="conversation", optional=True) ]) prompt_value = template.invoke( { "conversation": [ ("human", "Hi!"), ("ai", "How can I assist you today?"), ("human", "Can you make me an ice cream sundae?"), ("ai", "No.") ] } ) # Output: # ChatPromptValue( # messages=[ # SystemMessage(content='You are a helpful AI bot.'), # HumanMessage(content='Hi!'), # AIMessage(content='How can I assist you today?'), # HumanMessage(content='Can you make me an ice cream sundae?'), # AIMessage(content='No.'), # ] #) Single-variable template: If your prompt has only a single input variable (i.e., 1 instance of "{variable_nams}"), and you invoke the template with a non-dict object, the prompt template will inject the provided argument into that variable location. .. code-block:: python from langchain_core.prompts import ChatPromptTemplate template = ChatPromptTemplate([ ("system", "You are a helpful AI bot. Your name is Carl."), ("human", "{user_input}"), ]) prompt_value = template.invoke("Hello, there!") # Equivalent to # prompt_value = template.invoke({"user_input": "Hello, there!"}) # Output: # ChatPromptValue( # messages=[ # SystemMessage(content='You are a helpful AI bot. Your name is Carl.'), # HumanMessage(content='Hello, there!'), # ] # ) """ # noqa: E501 messages: Annotated[list[MessageLike], SkipValidation()] """List of messages consisting of either message prompt templates or messages.""" validate_template: bool = False """Whether or not to try validating the template.""" def __init__( self, messages: Sequence[MessageLikeRepresentation], *, template_format: PromptTemplateFormat = "f-string", **kwargs: Any, ) -> None: """Create a chat prompt template from a variety of message formats. Args: messages: sequence of message representations. A message can be represented using the following formats: (1) BaseMessagePromptTemplate, (2) BaseMessage, (3) 2-tuple of (message type, template); e.g., ("human", "{user_input}"), (4) 2-tuple of (message class, template), (5) a string which is shorthand for ("human", template); e.g., "{user_input}". template_format: format of the template. Defaults to "f-string". input_variables: A list of the names of the variables whose values are required as inputs to the prompt. optional_variables: A list of the names of the variables for placeholder or MessagePlaceholder that are optional. These variables are auto inferred from the prompt and user need not provide them. partial_variables: A dictionary of the partial variables the prompt template carries. Partial variables populate the template so that you don't need to pass them in every time you call the prompt. validate_template: Whether to validate the template. input_types: A dictionary of the types of the variables the prompt template expects. If not provided, all variables are assumed to be strings. Returns: A chat prompt template. Examples: Instantiation from a list of message templates: .. code-block:: python template = ChatPromptTemplate([ ("human", "Hello, how are you?"), ("ai", "I'm doing well, thanks!"), ("human", "That's good to hear."), ]) Instantiation from mixed message formats: .. code-block:: python template = ChatPromptTemplate([ SystemMessage(content="hello"), ("human", "Hello, how are you?"), ]) """ _messages = [ _convert_to_message(message, template_format) for message in messages ] # Automatically infer input variables from messages input_vars: set[str] = set() optional_variables: set[str] = set() partial_vars: dict[str, Any] = {} for _message in _messages: if isinstance(_message, MessagesPlaceholder) and _message.optional: partial_vars[_message.variable_name] = [] optional_variables.add(_message.variable_name) elif isinstance( _message, (BaseChatPromptTemplate, BaseMessagePromptTemplate) ): input_vars.update(_message.input_variables) kwargs = { "input_variables": sorted(input_vars), "optional_variables": sorted(optional_variables), "partial_variables": partial_vars, **kwargs, } cast(type[ChatPromptTemplate], super()).__init__(messages=_messages, **kwargs) @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "prompts", "chat"] def __add__(self, other: Any) -> ChatPromptTemplate: """Combine two prompt templates. Args: other: Another prompt template. Returns: Combined prompt template. """ # Allow for easy combining if isinstance(other, ChatPromptTemplate): return ChatPromptTemplate(messages=self.messages + other.messages) # type: ignore[call-arg] elif isinstance( other, (BaseMessagePromptTemplate, BaseMessage, BaseChatPromptTemplate) ): return ChatPromptTemplate(messages=self.messages + [other]) # type: ignore[call-arg] elif isinstance(other, (list, tuple)): _other = ChatPromptTemplate.from_messages(other) return ChatPromptTemplate(messages=self.messages + _other.messages) # type: ignore[call-arg] elif isinstance(other, str): prompt = HumanMessagePromptTemplate.from_template(other) return ChatPromptTemplate(messages=self.messages + [prompt]) # type: ignore[call-arg] else: msg = f"Unsupported operand type for +: {type(other)}" raise NotImplementedError(msg) @model_validator(mode="before") @classmethod def validate_input_variables(cls, values: dict) -> Any: """Validate input variables. If input_variables is not set, it will be set to the union of all input variables in the messages. Args: values: values to validate. Returns: Validated values. Raises: ValueError: If input variables do not match. """ messages = values["messages"] input_vars = set() optional_variables = set() input_types: dict[str, Any] = values.get("input_types", {}) for message in messages: if isinstance(message, (BaseMessagePromptTemplate, BaseChatPromptTemplate)): input_vars.update(message.input_variables) if isinstance(message, MessagesPlaceholder): if "partial_variables" not in values: values["partial_variables"] = {} if ( message.optional and message.variable_name not in values["partial_variables"] ): values["partial_variables"][message.variable_name] = [] optional_variables.add(message.variable_name) if message.variable_name not in input_types: input_types[message.variable_name] = list[AnyMessage] if "partial_variables" in values: input_vars = input_vars - set(values["partial_variables"]) if optional_variables: input_vars = input_vars - optional_variables if "input_variables" in values and values.get("validate_template"): if input_vars != set(values["input_variables"]): msg = ( "Got mismatched input_variables. " f"Expected: {input_vars}. " f"Got: {values['input_variables']}" ) raise ValueError(msg) else: values["input_variables"] = sorted(input_vars) if optional_variables: values["optional_variables"] = sorted(optional_variables) values["input_types"] = input_types return values
[docs] @classmethod def from_template(cls, template: str, **kwargs: Any) -> ChatPromptTemplate: """Create a chat prompt template from a template string. Creates a chat template consisting of a single message assumed to be from the human. Args: template: template string **kwargs: keyword arguments to pass to the constructor. Returns: A new instance of this class. """ prompt_template = PromptTemplate.from_template(template, **kwargs) message = HumanMessagePromptTemplate(prompt=prompt_template) return cls.from_messages([message])
[docs] @classmethod @deprecated("0.0.1", alternative="from_messages classmethod", pending=True) def from_role_strings( cls, string_messages: list[tuple[str, str]] ) -> ChatPromptTemplate: """Create a chat prompt template from a list of (role, template) tuples. Args: string_messages: list of (role, template) tuples. Returns: a chat prompt template. """ return cls( # type: ignore[call-arg] messages=[ ChatMessagePromptTemplate.from_template(template, role=role) for role, template in string_messages ] )
[docs] @classmethod @deprecated("0.0.1", alternative="from_messages classmethod", pending=True) def from_strings( cls, string_messages: list[tuple[type[BaseMessagePromptTemplate], str]] ) -> ChatPromptTemplate: """Create a chat prompt template from a list of (role class, template) tuples. Args: string_messages: list of (role class, template) tuples. Returns: a chat prompt template. """ return cls.from_messages(string_messages)
[docs] @classmethod def from_messages( cls, messages: Sequence[MessageLikeRepresentation], template_format: PromptTemplateFormat = "f-string", ) -> ChatPromptTemplate: """Create a chat prompt template from a variety of message formats. Examples: Instantiation from a list of message templates: .. code-block:: python template = ChatPromptTemplate.from_messages([ ("human", "Hello, how are you?"), ("ai", "I'm doing well, thanks!"), ("human", "That's good to hear."), ]) Instantiation from mixed message formats: .. code-block:: python template = ChatPromptTemplate.from_messages([ SystemMessage(content="hello"), ("human", "Hello, how are you?"), ]) Args: messages: sequence of message representations. A message can be represented using the following formats: (1) BaseMessagePromptTemplate, (2) BaseMessage, (3) 2-tuple of (message type, template); e.g., ("human", "{user_input}"), (4) 2-tuple of (message class, template), (5) a string which is shorthand for ("human", template); e.g., "{user_input}". template_format: format of the template. Defaults to "f-string". Returns: a chat prompt template. """ return cls(messages, template_format=template_format)
[docs] def format_messages(self, **kwargs: Any) -> list[BaseMessage]: """Format the chat template into a list of finalized messages. Args: **kwargs: keyword arguments to use for filling in template variables in all the template messages in this chat template. Returns: list of formatted messages. """ kwargs = self._merge_partial_and_user_variables(**kwargs) result = [] for message_template in self.messages: if isinstance(message_template, BaseMessage): result.extend([message_template]) elif isinstance( message_template, (BaseMessagePromptTemplate, BaseChatPromptTemplate) ): message = message_template.format_messages(**kwargs) result.extend(message) else: msg = f"Unexpected input: {message_template}" raise ValueError(msg) return result
[docs] async def aformat_messages(self, **kwargs: Any) -> list[BaseMessage]: """Async format the chat template into a list of finalized messages. Args: **kwargs: keyword arguments to use for filling in template variables in all the template messages in this chat template. Returns: list of formatted messages. Raises: ValueError: If unexpected input. """ kwargs = self._merge_partial_and_user_variables(**kwargs) result = [] for message_template in self.messages: if isinstance(message_template, BaseMessage): result.extend([message_template]) elif isinstance( message_template, (BaseMessagePromptTemplate, BaseChatPromptTemplate) ): message = await message_template.aformat_messages(**kwargs) result.extend(message) else: msg = f"Unexpected input: {message_template}" raise ValueError(msg) return result
[docs] def partial(self, **kwargs: Any) -> ChatPromptTemplate: """Get a new ChatPromptTemplate with some input variables already filled in. Args: **kwargs: keyword arguments to use for filling in template variables. Ought to be a subset of the input variables. Returns: A new ChatPromptTemplate. Example: .. code-block:: python from langchain_core.prompts import ChatPromptTemplate template = ChatPromptTemplate.from_messages( [ ("system", "You are an AI assistant named {name}."), ("human", "Hi I'm {user}"), ("ai", "Hi there, {user}, I'm {name}."), ("human", "{input}"), ] ) template2 = template.partial(user="Lucy", name="R2D2") template2.format_messages(input="hello") """ prompt_dict = self.__dict__.copy() prompt_dict["input_variables"] = list( set(self.input_variables).difference(kwargs) ) prompt_dict["partial_variables"] = {**self.partial_variables, **kwargs} return type(self)(**prompt_dict)
[docs] def append(self, message: MessageLikeRepresentation) -> None: """Append a message to the end of the chat template. Args: message: representation of a message to append. """ self.messages.append(_convert_to_message(message))
[docs] def extend(self, messages: Sequence[MessageLikeRepresentation]) -> None: """Extend the chat template with a sequence of messages. Args: messages: sequence of message representations to append. """ self.messages.extend([_convert_to_message(message) for message in messages])
@overload def __getitem__(self, index: int) -> MessageLike: ... @overload def __getitem__(self, index: slice) -> ChatPromptTemplate: ... def __getitem__( self, index: Union[int, slice] ) -> Union[MessageLike, ChatPromptTemplate]: """Use to index into the chat template.""" if isinstance(index, slice): start, stop, step = index.indices(len(self.messages)) messages = self.messages[start:stop:step] return ChatPromptTemplate.from_messages(messages) else: return self.messages[index] def __len__(self) -> int: """Get the length of the chat template.""" return len(self.messages) @property def _prompt_type(self) -> str: """Name of prompt type. Used for serialization.""" return "chat"
[docs] def save(self, file_path: Union[Path, str]) -> None: """Save prompt to file. Args: file_path: path to file. """ raise NotImplementedError
[docs] def pretty_repr(self, html: bool = False) -> str: """Human-readable representation. Args: html: Whether to format as HTML. Defaults to False. Returns: Human-readable representation. """ # TODO: handle partials return "\n\n".join(msg.pretty_repr(html=html) for msg in self.messages)
def _create_template_from_message_type( message_type: str, template: Union[str, list], template_format: PromptTemplateFormat = "f-string", ) -> BaseMessagePromptTemplate: """Create a message prompt template from a message type and template string. Args: message_type: str the type of the message template (e.g., "human", "ai", etc.) template: str the template string. template_format: format of the template. Defaults to "f-string". Returns: a message prompt template of the appropriate type. Raises: ValueError: If unexpected message type. """ if message_type in ("human", "user"): message: BaseMessagePromptTemplate = HumanMessagePromptTemplate.from_template( template, template_format=template_format ) elif message_type in ("ai", "assistant"): message = AIMessagePromptTemplate.from_template( cast(str, template), template_format=template_format ) elif message_type == "system": message = SystemMessagePromptTemplate.from_template( cast(str, template), template_format=template_format ) elif message_type == "placeholder": if isinstance(template, str): if template[0] != "{" or template[-1] != "}": msg = ( f"Invalid placeholder template: {template}." " Expected a variable name surrounded by curly braces." ) raise ValueError(msg) var_name = template[1:-1] message = MessagesPlaceholder(variable_name=var_name, optional=True) elif len(template) == 2 and isinstance(template[1], bool): var_name_wrapped, is_optional = template if not isinstance(var_name_wrapped, str): msg = ( "Expected variable name to be a string." f" Got: {var_name_wrapped}" ) raise ValueError(msg) if var_name_wrapped[0] != "{" or var_name_wrapped[-1] != "}": msg = ( f"Invalid placeholder template: {var_name_wrapped}." " Expected a variable name surrounded by curly braces." ) raise ValueError(msg) var_name = var_name_wrapped[1:-1] message = MessagesPlaceholder(variable_name=var_name, optional=is_optional) else: msg = ( "Unexpected arguments for placeholder message type." " Expected either a single string variable name" " or a list of [variable_name: str, is_optional: bool]." f" Got: {template}" ) raise ValueError(msg) else: msg = ( f"Unexpected message type: {message_type}. Use one of 'human'," f" 'user', 'ai', 'assistant', or 'system'." ) raise ValueError(msg) return message def _convert_to_message( message: MessageLikeRepresentation, template_format: PromptTemplateFormat = "f-string", ) -> Union[BaseMessage, BaseMessagePromptTemplate, BaseChatPromptTemplate]: """Instantiate a message from a variety of message formats. The message format can be one of the following: - BaseMessagePromptTemplate - BaseMessage - 2-tuple of (role string, template); e.g., ("human", "{user_input}") - 2-tuple of (message class, template) - string: shorthand for ("human", template); e.g., "{user_input}" Args: message: a representation of a message in one of the supported formats. template_format: format of the template. Defaults to "f-string". Returns: an instance of a message or a message template. Raises: ValueError: If unexpected message type. ValueError: If 2-tuple does not have 2 elements. """ if isinstance(message, (BaseMessagePromptTemplate, BaseChatPromptTemplate)): _message: Union[ BaseMessage, BaseMessagePromptTemplate, BaseChatPromptTemplate ] = message elif isinstance(message, BaseMessage): _message = message elif isinstance(message, str): _message = _create_template_from_message_type( "human", message, template_format=template_format ) elif isinstance(message, tuple): if len(message) != 2: msg = f"Expected 2-tuple of (role, template), got {message}" raise ValueError(msg) message_type_str, template = message if isinstance(message_type_str, str): _message = _create_template_from_message_type( message_type_str, template, template_format=template_format ) else: _message = message_type_str( prompt=PromptTemplate.from_template( cast(str, template), template_format=template_format ) ) else: msg = f"Unsupported message type: {type(message)}" raise NotImplementedError(msg) return _message