langchain_core.prompts.few_shot ηš„ζΊδ»£η 

"""Prompt template that contains few shot examples."""

from __future__ import annotations

from pathlib import Path
from typing import Any, Literal, Optional, Union

from pydantic import (
    BaseModel,
    ConfigDict,
    Field,
    model_validator,
)
from typing_extensions import Self

from langchain_core.example_selectors import BaseExampleSelector
from langchain_core.messages import BaseMessage, get_buffer_string
from langchain_core.prompts.chat import (
    BaseChatPromptTemplate,
    BaseMessagePromptTemplate,
)
from langchain_core.prompts.prompt import PromptTemplate
from langchain_core.prompts.string import (
    DEFAULT_FORMATTER_MAPPING,
    StringPromptTemplate,
    check_valid_template,
    get_template_variables,
)


class _FewShotPromptTemplateMixin(BaseModel):
    """Prompt template that contains few shot examples."""

    examples: Optional[list[dict]] = None
    """Examples to format into the prompt.
    Either this or example_selector should be provided."""

    example_selector: Optional[BaseExampleSelector] = None
    """ExampleSelector to choose the examples to format into the prompt.
    Either this or examples should be provided."""

    model_config = ConfigDict(
        arbitrary_types_allowed=True,
        extra="forbid",
    )

    @model_validator(mode="before")
    @classmethod
    def check_examples_and_selector(cls, values: dict) -> Any:
        """Check that one and only one of examples/example_selector are provided.

        Args:
            values: The values to check.

        Returns:
            The values if they are valid.

        Raises:
            ValueError: If neither or both examples and example_selector are provided.
            ValueError: If both examples and example_selector are provided.
        """
        examples = values.get("examples")
        example_selector = values.get("example_selector")
        if examples and example_selector:
            msg = "Only one of 'examples' and 'example_selector' should be provided"
            raise ValueError(msg)

        if examples is None and example_selector is None:
            msg = "One of 'examples' and 'example_selector' should be provided"
            raise ValueError(msg)

        return values

    def _get_examples(self, **kwargs: Any) -> list[dict]:
        """Get the examples to use for formatting the prompt.

        Args:
            **kwargs: Keyword arguments to be passed to the example selector.

        Returns:
            List of examples.

        Raises:
            ValueError: If neither examples nor example_selector are provided.
        """
        if self.examples is not None:
            return self.examples
        elif self.example_selector is not None:
            return self.example_selector.select_examples(kwargs)
        else:
            msg = "One of 'examples' and 'example_selector' should be provided"
            raise ValueError(msg)

    async def _aget_examples(self, **kwargs: Any) -> list[dict]:
        """Async get the examples to use for formatting the prompt.

        Args:
            **kwargs: Keyword arguments to be passed to the example selector.

        Returns:
            List of examples.

        Raises:
            ValueError: If neither examples nor example_selector are provided.
        """
        if self.examples is not None:
            return self.examples
        elif self.example_selector is not None:
            return await self.example_selector.aselect_examples(kwargs)
        else:
            msg = "One of 'examples' and 'example_selector' should be provided"
            raise ValueError(msg)


[docs] class FewShotPromptTemplate(_FewShotPromptTemplateMixin, StringPromptTemplate): """Prompt template that contains few shot examples.""" @classmethod def is_lc_serializable(cls) -> bool: """Return whether or not the class is serializable.""" return False validate_template: bool = False """Whether or not to try validating the template.""" example_prompt: PromptTemplate """PromptTemplate used to format an individual example.""" suffix: str """A prompt template string to put after the examples.""" example_separator: str = "\n\n" """String separator used to join the prefix, the examples, and suffix.""" prefix: str = "" """A prompt template string to put before the examples.""" template_format: Literal["f-string", "jinja2"] = "f-string" """The format of the prompt template. Options are: 'f-string', 'jinja2'.""" def __init__(self, **kwargs: Any) -> None: """Initialize the few shot prompt template.""" if "input_variables" not in kwargs and "example_prompt" in kwargs: kwargs["input_variables"] = kwargs["example_prompt"].input_variables super().__init__(**kwargs) @model_validator(mode="after") def template_is_valid(self) -> Self: """Check that prefix, suffix, and input variables are consistent.""" if self.validate_template: check_valid_template( self.prefix + self.suffix, self.template_format, self.input_variables + list(self.partial_variables), ) elif self.template_format or None: self.input_variables = [ var for var in get_template_variables( self.prefix + self.suffix, self.template_format ) if var not in self.partial_variables ] return self model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", )
[docs] def format(self, **kwargs: Any) -> str: """Format the prompt with inputs generating a string. Use this method to generate a string representation of a prompt. Args: **kwargs: keyword arguments to use for formatting. Returns: A string representation of the prompt. """ kwargs = self._merge_partial_and_user_variables(**kwargs) # Get the examples to use. examples = self._get_examples(**kwargs) examples = [ {k: e[k] for k in self.example_prompt.input_variables} for e in examples ] # Format the examples. example_strings = [ self.example_prompt.format(**example) for example in examples ] # Create the overall template. pieces = [self.prefix, *example_strings, self.suffix] template = self.example_separator.join([piece for piece in pieces if piece]) # Format the template with the input variables. return DEFAULT_FORMATTER_MAPPING[self.template_format](template, **kwargs)
[docs] async def aformat(self, **kwargs: Any) -> str: """Async format the prompt with inputs generating a string. Use this method to generate a string representation of a prompt. Args: **kwargs: keyword arguments to use for formatting. Returns: A string representation of the prompt. """ kwargs = self._merge_partial_and_user_variables(**kwargs) # Get the examples to use. examples = await self._aget_examples(**kwargs) examples = [ {k: e[k] for k in self.example_prompt.input_variables} for e in examples ] # Format the examples. example_strings = [ await self.example_prompt.aformat(**example) for example in examples ] # Create the overall template. pieces = [self.prefix, *example_strings, self.suffix] template = self.example_separator.join([piece for piece in pieces if piece]) # Format the template with the input variables. return DEFAULT_FORMATTER_MAPPING[self.template_format](template, **kwargs)
@property def _prompt_type(self) -> str: """Return the prompt type key.""" return "few_shot"
[docs] def save(self, file_path: Union[Path, str]) -> None: """Save the prompt template to a file. Args: file_path: The path to save the prompt template to. Raises: ValueError: If example_selector is provided. """ if self.example_selector: msg = "Saving an example selector is not currently supported" raise ValueError(msg) return super().save(file_path)
[docs] class FewShotChatMessagePromptTemplate( BaseChatPromptTemplate, _FewShotPromptTemplateMixin ): """Chat prompt template that supports few-shot examples. The high level structure of produced by this prompt template is a list of messages consisting of prefix message(s), example message(s), and suffix message(s). This structure enables creating a conversation with intermediate examples like: System: You are a helpful AI Assistant Human: What is 2+2? AI: 4 Human: What is 2+3? AI: 5 Human: What is 4+4? This prompt template can be used to generate a fixed list of examples or else to dynamically select examples based on the input. Examples: Prompt template with a fixed list of examples (matching the sample conversation above): .. code-block:: python from langchain_core.prompts import ( FewShotChatMessagePromptTemplate, ChatPromptTemplate ) examples = [ {"input": "2+2", "output": "4"}, {"input": "2+3", "output": "5"}, ] example_prompt = ChatPromptTemplate.from_messages( [('human', '{input}'), ('ai', '{output}')] ) few_shot_prompt = FewShotChatMessagePromptTemplate( examples=examples, # This is a prompt template used to format each individual example. example_prompt=example_prompt, ) final_prompt = ChatPromptTemplate.from_messages( [ ('system', 'You are a helpful AI Assistant'), few_shot_prompt, ('human', '{input}'), ] ) final_prompt.format(input="What is 4+4?") Prompt template with dynamically selected examples: .. code-block:: python from langchain_core.prompts import SemanticSimilarityExampleSelector from langchain_core.embeddings import OpenAIEmbeddings from langchain_core.vectorstores import Chroma examples = [ {"input": "2+2", "output": "4"}, {"input": "2+3", "output": "5"}, {"input": "2+4", "output": "6"}, # ... ] to_vectorize = [ " ".join(example.values()) for example in examples ] embeddings = OpenAIEmbeddings() vectorstore = Chroma.from_texts( to_vectorize, embeddings, metadatas=examples ) example_selector = SemanticSimilarityExampleSelector( vectorstore=vectorstore ) from langchain_core import SystemMessage from langchain_core.prompts import HumanMessagePromptTemplate from langchain_core.prompts.few_shot import FewShotChatMessagePromptTemplate few_shot_prompt = FewShotChatMessagePromptTemplate( # Which variable(s) will be passed to the example selector. input_variables=["input"], example_selector=example_selector, # Define how each example will be formatted. # In this case, each example will become 2 messages: # 1 human, and 1 AI example_prompt=( HumanMessagePromptTemplate.from_template("{input}") + AIMessagePromptTemplate.from_template("{output}") ), ) # Define the overall prompt. final_prompt = ( SystemMessagePromptTemplate.from_template( "You are a helpful AI Assistant" ) + few_shot_prompt + HumanMessagePromptTemplate.from_template("{input}") ) # Show the prompt print(final_prompt.format_messages(input="What's 3+3?")) # noqa: T201 # Use within an LLM from langchain_core.chat_models import ChatAnthropic chain = final_prompt | ChatAnthropic(model="claude-3-haiku-20240307") chain.invoke({"input": "What's 3+3?"}) """ input_variables: list[str] = Field(default_factory=list) """A list of the names of the variables the prompt template will use to pass to the example_selector, if provided.""" example_prompt: Union[BaseMessagePromptTemplate, BaseChatPromptTemplate] """The class to format each example.""" @classmethod def is_lc_serializable(cls) -> bool: """Return whether or not the class is serializable.""" return False model_config = ConfigDict( arbitrary_types_allowed=True, extra="forbid", )
[docs] def format_messages(self, **kwargs: Any) -> list[BaseMessage]: """Format kwargs into a list of messages. Args: **kwargs: keyword arguments to use for filling in templates in messages. Returns: A list of formatted messages with all template variables filled in. """ # Get the examples to use. examples = self._get_examples(**kwargs) examples = [ {k: e[k] for k in self.example_prompt.input_variables} for e in examples ] # Format the examples. messages = [ message for example in examples for message in self.example_prompt.format_messages(**example) ] return messages
[docs] async def aformat_messages(self, **kwargs: Any) -> list[BaseMessage]: """Async format kwargs into a list of messages. Args: **kwargs: keyword arguments to use for filling in templates in messages. Returns: A list of formatted messages with all template variables filled in. """ # Get the examples to use. examples = await self._aget_examples(**kwargs) examples = [ {k: e[k] for k in self.example_prompt.input_variables} for e in examples ] # Format the examples. messages = [ message for example in examples for message in await self.example_prompt.aformat_messages(**example) ] return messages
[docs] def format(self, **kwargs: Any) -> str: """Format the prompt with inputs generating a string. Use this method to generate a string representation of a prompt consisting of chat messages. Useful for feeding into a string-based completion language model or debugging. Args: **kwargs: keyword arguments to use for formatting. Returns: A string representation of the prompt """ messages = self.format_messages(**kwargs) return get_buffer_string(messages)
[docs] async def aformat(self, **kwargs: Any) -> str: """Async format the prompt with inputs generating a string. Use this method to generate a string representation of a prompt consisting of chat messages. Useful for feeding into a string-based completion language model or debugging. Args: **kwargs: keyword arguments to use for formatting. Returns: A string representation of the prompt """ messages = await self.aformat_messages(**kwargs) return get_buffer_string(messages)
[docs] def pretty_repr(self, html: bool = False) -> str: """Return a pretty representation of the prompt template. Args: html: Whether or not to return an HTML formatted string. Returns: A pretty representation of the prompt template. """ raise NotImplementedError