langchain_core.runnables.configurable ηš„ζΊδ»£η 

from __future__ import annotations

import enum
import threading
from abc import abstractmethod
from collections.abc import AsyncIterator, Iterator, Sequence
from collections.abc import Mapping as Mapping
from functools import wraps
from typing import (
    Any,
    Callable,
    Optional,
    Union,
    cast,
)
from weakref import WeakValueDictionary

from pydantic import BaseModel, ConfigDict
from typing_extensions import override

from langchain_core.runnables.base import Runnable, RunnableSerializable
from langchain_core.runnables.config import (
    RunnableConfig,
    ensure_config,
    get_config_list,
    get_executor_for_config,
    merge_configs,
)
from langchain_core.runnables.graph import Graph
from langchain_core.runnables.utils import (
    AnyConfigurableField,
    ConfigurableField,
    ConfigurableFieldMultiOption,
    ConfigurableFieldSingleOption,
    ConfigurableFieldSpec,
    Input,
    Output,
    gather_with_concurrency,
    get_unique_config_specs,
)


[docs] class DynamicRunnable(RunnableSerializable[Input, Output]): """Serializable Runnable that can be dynamically configured. A DynamicRunnable should be initiated using the `configurable_fields` or `configurable_alternatives` method of a Runnable. Parameters: default: The default Runnable to use. config: The configuration to use. """ default: RunnableSerializable[Input, Output] config: Optional[RunnableConfig] = None model_config = ConfigDict( arbitrary_types_allowed=True, ) @classmethod def is_lc_serializable(cls) -> bool: return True @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "runnable"] @property @override def InputType(self) -> type[Input]: return self.default.InputType @property @override def OutputType(self) -> type[Output]: return self.default.OutputType def get_input_schema( self, config: Optional[RunnableConfig] = None ) -> type[BaseModel]: runnable, config = self.prepare(config) return runnable.get_input_schema(config) def get_output_schema( self, config: Optional[RunnableConfig] = None ) -> type[BaseModel]: runnable, config = self.prepare(config) return runnable.get_output_schema(config) def get_graph(self, config: Optional[RunnableConfig] = None) -> Graph: runnable, config = self.prepare(config) return runnable.get_graph(config)
[docs] def with_config( self, config: Optional[RunnableConfig] = None, # Sadly Unpack is not well supported by mypy so this will have to be untyped **kwargs: Any, ) -> Runnable[Input, Output]: return self.__class__( **{**self.__dict__, "config": ensure_config(merge_configs(config, kwargs))} # type: ignore[arg-type] )
[docs] def prepare( self, config: Optional[RunnableConfig] = None ) -> tuple[Runnable[Input, Output], RunnableConfig]: """Prepare the Runnable for invocation. Args: config: The configuration to use. Defaults to None. Returns: Tuple[Runnable[Input, Output], RunnableConfig]: The prepared Runnable and configuration. """ runnable: Runnable[Input, Output] = self while isinstance(runnable, DynamicRunnable): runnable, config = runnable._prepare(merge_configs(runnable.config, config)) return runnable, cast(RunnableConfig, config)
@abstractmethod def _prepare( self, config: Optional[RunnableConfig] = None ) -> tuple[Runnable[Input, Output], RunnableConfig]: ...
[docs] def invoke( self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any ) -> Output: runnable, config = self.prepare(config) return runnable.invoke(input, config, **kwargs)
[docs] async def ainvoke( self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Any ) -> Output: runnable, config = self.prepare(config) return await runnable.ainvoke(input, config, **kwargs)
[docs] def batch( self, inputs: list[Input], config: Optional[Union[RunnableConfig, list[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any], ) -> list[Output]: configs = get_config_list(config, len(inputs)) prepared = [self.prepare(c) for c in configs] if all(p is self.default for p, _ in prepared): return self.default.batch( inputs, [c for _, c in prepared], return_exceptions=return_exceptions, **kwargs, ) if not inputs: return [] def invoke( prepared: tuple[Runnable[Input, Output], RunnableConfig], input: Input, ) -> Union[Output, Exception]: bound, config = prepared if return_exceptions: try: return bound.invoke(input, config, **kwargs) except Exception as e: return e else: return bound.invoke(input, config, **kwargs) # If there's only one input, don't bother with the executor if len(inputs) == 1: return cast(list[Output], [invoke(prepared[0], inputs[0])]) with get_executor_for_config(configs[0]) as executor: return cast(list[Output], list(executor.map(invoke, prepared, inputs)))
[docs] async def abatch( self, inputs: list[Input], config: Optional[Union[RunnableConfig, list[RunnableConfig]]] = None, *, return_exceptions: bool = False, **kwargs: Optional[Any], ) -> list[Output]: configs = get_config_list(config, len(inputs)) prepared = [self.prepare(c) for c in configs] if all(p is self.default for p, _ in prepared): return await self.default.abatch( inputs, [c for _, c in prepared], return_exceptions=return_exceptions, **kwargs, ) if not inputs: return [] async def ainvoke( prepared: tuple[Runnable[Input, Output], RunnableConfig], input: Input, ) -> Union[Output, Exception]: bound, config = prepared if return_exceptions: try: return await bound.ainvoke(input, config, **kwargs) except Exception as e: return e else: return await bound.ainvoke(input, config, **kwargs) coros = map(ainvoke, prepared, inputs) return await gather_with_concurrency(configs[0].get("max_concurrency"), *coros)
[docs] def stream( self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any], ) -> Iterator[Output]: runnable, config = self.prepare(config) return runnable.stream(input, config, **kwargs)
[docs] async def astream( self, input: Input, config: Optional[RunnableConfig] = None, **kwargs: Optional[Any], ) -> AsyncIterator[Output]: runnable, config = self.prepare(config) async for chunk in runnable.astream(input, config, **kwargs): yield chunk
def transform( self, input: Iterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any], ) -> Iterator[Output]: runnable, config = self.prepare(config) return runnable.transform(input, config, **kwargs) async def atransform( self, input: AsyncIterator[Input], config: Optional[RunnableConfig] = None, **kwargs: Optional[Any], ) -> AsyncIterator[Output]: runnable, config = self.prepare(config) async for chunk in runnable.atransform(input, config, **kwargs): yield chunk def __getattr__(self, name: str) -> Any: attr = getattr(self.default, name) if callable(attr): @wraps(attr) def wrapper(*args: Any, **kwargs: Any) -> Any: for key, arg in kwargs.items(): if key == "config" and ( isinstance(arg, dict) and "configurable" in arg and isinstance(arg["configurable"], dict) ): runnable, config = self.prepare(cast(RunnableConfig, arg)) kwargs = {**kwargs, "config": config} return getattr(runnable, name)(*args, **kwargs) for idx, arg in enumerate(args): if ( isinstance(arg, dict) and "configurable" in arg and isinstance(arg["configurable"], dict) ): runnable, config = self.prepare(cast(RunnableConfig, arg)) argsl = list(args) argsl[idx] = config return getattr(runnable, name)(*argsl, **kwargs) if self.config: runnable, config = self.prepare() return getattr(runnable, name)(*args, **kwargs) return attr(*args, **kwargs) return wrapper else: return attr
[docs] class RunnableConfigurableFields(DynamicRunnable[Input, Output]): """Runnable that can be dynamically configured. A RunnableConfigurableFields should be initiated using the `configurable_fields` method of a Runnable. Parameters: fields: The configurable fields to use. Here is an example of using a RunnableConfigurableFields with LLMs: .. code-block:: python from langchain_core.prompts import PromptTemplate from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI model = ChatOpenAI(temperature=0).configurable_fields( temperature=ConfigurableField( id="temperature", name="LLM Temperature", description="The temperature of the LLM", ) ) # This creates a RunnableConfigurableFields for a chat model. # When invoking the created RunnableSequence, you can pass in the # value for your ConfigurableField's id which in this case # will be change in temperature prompt = PromptTemplate.from_template("Pick a random number above {x}") chain = prompt | model chain.invoke({"x": 0}) chain.invoke({"x": 0}, config={"configurable": {"temperature": 0.9}}) Here is an example of using a RunnableConfigurableFields with HubRunnables: .. code-block:: python from langchain_core.prompts import PromptTemplate from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI from langchain.runnables.hub import HubRunnable prompt = HubRunnable("rlm/rag-prompt").configurable_fields( owner_repo_commit=ConfigurableField( id="hub_commit", name="Hub Commit", description="The Hub commit to pull from", ) ) prompt.invoke({"question": "foo", "context": "bar"}) # Invoking prompt with `with_config` method prompt.invoke( {"question": "foo", "context": "bar"}, config={"configurable": {"hub_commit": "rlm/rag-prompt-llama"}}, ) """ fields: dict[str, AnyConfigurableField] @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "runnable"] @property def config_specs(self) -> list[ConfigurableFieldSpec]: """Get the configuration specs for the RunnableConfigurableFields. Returns: List[ConfigurableFieldSpec]: The configuration specs. """ config_specs = [] for field_name, spec in self.fields.items(): if isinstance(spec, ConfigurableField): config_specs.append( ConfigurableFieldSpec( id=spec.id, name=spec.name, description=spec.description or self.default.model_fields[field_name].description, annotation=spec.annotation or self.default.model_fields[field_name].annotation, default=getattr(self.default, field_name), is_shared=spec.is_shared, ) ) else: config_specs.append( make_options_spec( spec, self.default.model_fields[field_name].description ) ) config_specs.extend(self.default.config_specs) return get_unique_config_specs(config_specs)
[docs] def configurable_fields( self, **kwargs: AnyConfigurableField ) -> RunnableSerializable[Input, Output]: """Get a new RunnableConfigurableFields with the specified configurable fields.""" return self.default.configurable_fields(**{**self.fields, **kwargs})
def _prepare( self, config: Optional[RunnableConfig] = None ) -> tuple[Runnable[Input, Output], RunnableConfig]: config = ensure_config(config) specs_by_id = {spec.id: (key, spec) for key, spec in self.fields.items()} configurable_fields = { specs_by_id[k][0]: v for k, v in config.get("configurable", {}).items() if k in specs_by_id and isinstance(specs_by_id[k][1], ConfigurableField) } configurable_single_options = { k: v.options[(config.get("configurable", {}).get(v.id) or v.default)] for k, v in self.fields.items() if isinstance(v, ConfigurableFieldSingleOption) } configurable_multi_options = { k: [ v.options[o] for o in config.get("configurable", {}).get(v.id, v.default) ] for k, v in self.fields.items() if isinstance(v, ConfigurableFieldMultiOption) } configurable = { **configurable_fields, **configurable_single_options, **configurable_multi_options, } if configurable: init_params = { k: v for k, v in self.default.__dict__.items() if k in self.default.model_fields } return ( self.default.__class__(**{**init_params, **configurable}), config, ) else: return (self.default, config)
RunnableConfigurableFields.model_rebuild() # Before Python 3.11 native StrEnum is not available
[docs] class StrEnum(str, enum.Enum): """String enum."""
_enums_for_spec: WeakValueDictionary[ Union[ ConfigurableFieldSingleOption, ConfigurableFieldMultiOption, ConfigurableField ], type[StrEnum], ] = WeakValueDictionary() _enums_for_spec_lock = threading.Lock()
[docs] class RunnableConfigurableAlternatives(DynamicRunnable[Input, Output]): """Runnable that can be dynamically configured. A RunnableConfigurableAlternatives should be initiated using the `configurable_alternatives` method of a Runnable or can be initiated directly as well. Here is an example of using a RunnableConfigurableAlternatives that uses alternative prompts to illustrate its functionality: .. code-block:: python from langchain_core.runnables import ConfigurableField from langchain_openai import ChatOpenAI # This creates a RunnableConfigurableAlternatives for Prompt Runnable # with two alternatives. prompt = PromptTemplate.from_template( "Tell me a joke about {topic}" ).configurable_alternatives( ConfigurableField(id="prompt"), default_key="joke", poem=PromptTemplate.from_template("Write a short poem about {topic}") ) # When invoking the created RunnableSequence, you can pass in the # value for your ConfigurableField's id which in this case will either be # `joke` or `poem`. chain = prompt | ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0) # The `with_config` method brings in the desired Prompt Runnable in your # Runnable Sequence. chain.with_config(configurable={"prompt": "poem"}).invoke({"topic": "bears"}) Equivalently, you can initialize RunnableConfigurableAlternatives directly and use in LCEL in the same way: .. code-block:: python from langchain_core.runnables import ConfigurableField from langchain_core.runnables.configurable import RunnableConfigurableAlternatives from langchain_openai import ChatOpenAI prompt = RunnableConfigurableAlternatives( which=ConfigurableField(id='prompt'), default=PromptTemplate.from_template("Tell me a joke about {topic}"), default_key='joke', prefix_keys=False, alternatives={"poem":PromptTemplate.from_template("Write a short poem about {topic}")} ) chain = prompt | ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0) chain.with_config(configurable={"prompt": "poem"}).invoke({"topic": "bears"}) """ # noqa: E501 which: ConfigurableField """The ConfigurableField to use to choose between alternatives.""" alternatives: dict[ str, Union[Runnable[Input, Output], Callable[[], Runnable[Input, Output]]], ] """The alternatives to choose from.""" default_key: str = "default" """The enum value to use for the default option. Defaults to "default".""" prefix_keys: bool """Whether to prefix configurable fields of each alternative with a namespace of the form <which.id>==<alternative_key>, eg. a key named "temperature" used by the alternative named "gpt3" becomes "model==gpt3/temperature".""" @classmethod def get_lc_namespace(cls) -> list[str]: """Get the namespace of the langchain object.""" return ["langchain", "schema", "runnable"] @property def config_specs(self) -> list[ConfigurableFieldSpec]: with _enums_for_spec_lock: if which_enum := _enums_for_spec.get(self.which): pass else: which_enum = StrEnum( # type: ignore[call-overload] self.which.name or self.which.id, ( (v, v) for v in list(self.alternatives.keys()) + [self.default_key] ), ) _enums_for_spec[self.which] = cast(type[StrEnum], which_enum) return get_unique_config_specs( # which alternative [ ConfigurableFieldSpec( id=self.which.id, name=self.which.name, description=self.which.description, annotation=which_enum, default=self.default_key, is_shared=self.which.is_shared, ), ] # config specs of the default option + ( [ prefix_config_spec(s, f"{self.which.id}=={self.default_key}") for s in self.default.config_specs ] if self.prefix_keys else self.default.config_specs ) # config specs of the alternatives + [ ( prefix_config_spec(s, f"{self.which.id}=={alt_key}") if self.prefix_keys else s ) for alt_key, alt in self.alternatives.items() if isinstance(alt, RunnableSerializable) for s in alt.config_specs ] )
[docs] def configurable_fields( self, **kwargs: AnyConfigurableField ) -> RunnableSerializable[Input, Output]: return self.__class__( which=self.which, default=self.default.configurable_fields(**kwargs), alternatives=self.alternatives, default_key=self.default_key, prefix_keys=self.prefix_keys, )
def _prepare( self, config: Optional[RunnableConfig] = None ) -> tuple[Runnable[Input, Output], RunnableConfig]: config = ensure_config(config) which = config.get("configurable", {}).get(self.which.id, self.default_key) # remap configurable keys for the chosen alternative if self.prefix_keys: config = cast( RunnableConfig, { **config, "configurable": { _strremoveprefix(k, f"{self.which.id}=={which}/"): v for k, v in config.get("configurable", {}).items() }, }, ) # return the chosen alternative if which == self.default_key: return (self.default, config) elif which in self.alternatives: alt = self.alternatives[which] if isinstance(alt, Runnable): return (alt, config) else: return (alt(), config) else: msg = f"Unknown alternative: {which}" raise ValueError(msg)
def _strremoveprefix(s: str, prefix: str) -> str: """str.removeprefix() is only available in Python 3.9+.""" return s.replace(prefix, "", 1) if s.startswith(prefix) else s
[docs] def prefix_config_spec( spec: ConfigurableFieldSpec, prefix: str ) -> ConfigurableFieldSpec: """Prefix the id of a ConfigurableFieldSpec. This is useful when a RunnableConfigurableAlternatives is used as a ConfigurableField of another RunnableConfigurableAlternatives. Args: spec: The ConfigurableFieldSpec to prefix. prefix: The prefix to add. Returns: ConfigurableFieldSpec: The prefixed ConfigurableFieldSpec. """ return ( ConfigurableFieldSpec( id=f"{prefix}/{spec.id}", name=spec.name, description=spec.description, annotation=spec.annotation, default=spec.default, is_shared=spec.is_shared, ) if not spec.is_shared else spec )
[docs] def make_options_spec( spec: Union[ConfigurableFieldSingleOption, ConfigurableFieldMultiOption], description: Optional[str], ) -> ConfigurableFieldSpec: """Make a ConfigurableFieldSpec for a ConfigurableFieldSingleOption or ConfigurableFieldMultiOption. Args: spec: The ConfigurableFieldSingleOption or ConfigurableFieldMultiOption. description: The description to use if the spec does not have one. Returns: The ConfigurableFieldSpec. """ with _enums_for_spec_lock: if enum := _enums_for_spec.get(spec): pass else: enum = StrEnum( # type: ignore[call-overload] spec.name or spec.id, ((v, v) for v in list(spec.options.keys())), ) _enums_for_spec[spec] = cast(type[StrEnum], enum) if isinstance(spec, ConfigurableFieldSingleOption): return ConfigurableFieldSpec( id=spec.id, name=spec.name, description=spec.description or description, annotation=enum, default=spec.default, is_shared=spec.is_shared, ) else: return ConfigurableFieldSpec( id=spec.id, name=spec.name, description=spec.description or description, annotation=Sequence[enum], # type: ignore[valid-type] default=spec.default, is_shared=spec.is_shared, )