langchain_core.tools.simple ηζΊδ»£η
from __future__ import annotations
from collections.abc import Awaitable
from inspect import signature
from typing import (
Any,
Callable,
Optional,
Union,
)
from pydantic import BaseModel
from langchain_core.callbacks import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from langchain_core.messages import ToolCall
from langchain_core.runnables import RunnableConfig, run_in_executor
from langchain_core.tools.base import (
BaseTool,
ToolException,
_get_runnable_config_param,
)
[docs]
class Tool(BaseTool):
"""Tool that takes in function or coroutine directly."""
description: str = ""
func: Optional[Callable[..., str]]
"""The function to run when the tool is called."""
coroutine: Optional[Callable[..., Awaitable[str]]] = None
"""The asynchronous version of the function."""
# --- Runnable ---
[docs]
async def ainvoke(
self,
input: Union[str, dict, ToolCall],
config: Optional[RunnableConfig] = None,
**kwargs: Any,
) -> Any:
if not self.coroutine:
# If the tool does not implement async, fall back to default implementation
return await run_in_executor(config, self.invoke, input, config, **kwargs)
return await super().ainvoke(input, config, **kwargs)
# --- Tool ---
@property
def args(self) -> dict:
"""The tool's input arguments.
Returns:
The input arguments for the tool.
"""
if self.args_schema is not None:
return self.args_schema.model_json_schema()["properties"]
# For backwards compatibility, if the function signature is ambiguous,
# assume it takes a single string input.
return {"tool_input": {"type": "string"}}
def _to_args_and_kwargs(
self, tool_input: Union[str, dict], tool_call_id: Optional[str]
) -> tuple[tuple, dict]:
"""Convert tool input to pydantic model."""
args, kwargs = super()._to_args_and_kwargs(tool_input, tool_call_id)
# For backwards compatibility. The tool must be run with a single input
all_args = list(args) + list(kwargs.values())
if len(all_args) != 1:
msg = (
f"""Too many arguments to single-input tool {self.name}.
Consider using StructuredTool instead."""
f" Args: {all_args}"
)
raise ToolException(msg)
return tuple(all_args), {}
def _run(
self,
*args: Any,
config: RunnableConfig,
run_manager: Optional[CallbackManagerForToolRun] = None,
**kwargs: Any,
) -> Any:
"""Use the tool."""
if self.func:
if run_manager and signature(self.func).parameters.get("callbacks"):
kwargs["callbacks"] = run_manager.get_child()
if config_param := _get_runnable_config_param(self.func):
kwargs[config_param] = config
return self.func(*args, **kwargs)
msg = "Tool does not support sync invocation."
raise NotImplementedError(msg)
async def _arun(
self,
*args: Any,
config: RunnableConfig,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
**kwargs: Any,
) -> Any:
"""Use the tool asynchronously."""
if self.coroutine:
if run_manager and signature(self.coroutine).parameters.get("callbacks"):
kwargs["callbacks"] = run_manager.get_child()
if config_param := _get_runnable_config_param(self.coroutine):
kwargs[config_param] = config
return await self.coroutine(*args, **kwargs)
# NOTE: this code is unreachable since _arun is only called if coroutine is not
# None.
return await super()._arun(
*args, config=config, run_manager=run_manager, **kwargs
)
# TODO: this is for backwards compatibility, remove in future
def __init__(
self, name: str, func: Optional[Callable], description: str, **kwargs: Any
) -> None:
"""Initialize tool."""
super().__init__( # type: ignore[call-arg]
name=name, func=func, description=description, **kwargs
)
[docs]
@classmethod
def from_function(
cls,
func: Optional[Callable],
name: str, # We keep these required to support backwards compatibility
description: str,
return_direct: bool = False,
args_schema: Optional[type[BaseModel]] = None,
coroutine: Optional[
Callable[..., Awaitable[Any]]
] = None, # This is last for compatibility, but should be after func
**kwargs: Any,
) -> Tool:
"""Initialize tool from a function.
Args:
func: The function to create the tool from.
name: The name of the tool.
description: The description of the tool.
return_direct: Whether to return the output directly. Defaults to False.
args_schema: The schema of the tool's input arguments. Defaults to None.
coroutine: The asynchronous version of the function. Defaults to None.
kwargs: Additional arguments to pass to the tool.
Returns:
The tool.
Raises:
ValueError: If the function is not provided.
"""
if func is None and coroutine is None:
msg = "Function and/or coroutine must be provided"
raise ValueError(msg)
return cls(
name=name,
func=func,
coroutine=coroutine,
description=description,
return_direct=return_direct,
args_schema=args_schema,
**kwargs,
)
Tool.model_rebuild()