"""Methods for creating function specs in the style of OpenAI Functions"""
from __future__ import annotations
import collections
import inspect
import logging
import types
import typing
import uuid
from typing import (
TYPE_CHECKING,
Annotated,
Any,
Callable,
Literal,
Optional,
Union,
cast,
)
from pydantic import BaseModel
from typing_extensions import TypedDict, get_args, get_origin, is_typeddict
from langchain_core._api import beta, deprecated
from langchain_core.messages import AIMessage, BaseMessage, HumanMessage, ToolMessage
from langchain_core.utils.json_schema import dereference_refs
from langchain_core.utils.pydantic import is_basemodel_subclass
if TYPE_CHECKING:
from langchain_core.tools import BaseTool
logger = logging.getLogger(__name__)
PYTHON_TO_JSON_TYPES = {
"str": "string",
"int": "integer",
"float": "number",
"bool": "boolean",
}
[docs]
class FunctionDescription(TypedDict):
"""Representation of a callable function to send to an LLM."""
name: str
"""The name of the function."""
description: str
"""A description of the function."""
parameters: dict
"""The parameters of the function."""
def _rm_titles(kv: dict, prev_key: str = "") -> dict:
new_kv = {}
for k, v in kv.items():
if k == "title":
if isinstance(v, dict) and prev_key == "properties" and "title" in v:
new_kv[k] = _rm_titles(v, k)
else:
continue
elif isinstance(v, dict):
new_kv[k] = _rm_titles(v, k)
else:
new_kv[k] = v
return new_kv
def _convert_pydantic_to_openai_function(
model: type,
*,
name: Optional[str] = None,
description: Optional[str] = None,
rm_titles: bool = True,
) -> FunctionDescription:
"""Converts a Pydantic model to a function description for the OpenAI API.
Args:
model: The Pydantic model to convert.
name: The name of the function. If not provided, the title of the schema will be
used.
description: The description of the function. If not provided, the description
of the schema will be used.
rm_titles: Whether to remove titles from the schema. Defaults to True.
Returns:
The function description.
"""
if hasattr(model, "model_json_schema"):
schema = model.model_json_schema() # Pydantic 2
elif hasattr(model, "schema"):
schema = model.schema() # Pydantic 1
else:
msg = "Model must be a Pydantic model."
raise TypeError(msg)
schema = dereference_refs(schema)
if "definitions" in schema: # pydantic 1
schema.pop("definitions", None)
if "$defs" in schema: # pydantic 2
schema.pop("$defs", None)
title = schema.pop("title", "")
default_description = schema.pop("description", "")
return {
"name": name or title,
"description": description or default_description,
"parameters": _rm_titles(schema) if rm_titles else schema,
}
convert_pydantic_to_openai_function = deprecated(
"0.1.16",
alternative="langchain_core.utils.function_calling.convert_to_openai_function()",
removal="1.0",
)(_convert_pydantic_to_openai_function)
def _get_python_function_name(function: Callable) -> str:
"""Get the name of a Python function."""
return function.__name__
def _convert_python_function_to_openai_function(
function: Callable,
) -> FunctionDescription:
"""Convert a Python function to an OpenAI function-calling API compatible dict.
Assumes the Python function has type hints and a docstring with a description. If
the docstring has Google Python style argument descriptions, these will be
included as well.
Args:
function: The Python function to convert.
Returns:
The OpenAI function description.
"""
from langchain_core.tools.base import create_schema_from_function
func_name = _get_python_function_name(function)
model = create_schema_from_function(
func_name,
function,
filter_args=(),
parse_docstring=True,
error_on_invalid_docstring=False,
include_injected=False,
)
return _convert_pydantic_to_openai_function(
model,
name=func_name,
description=model.__doc__,
)
convert_python_function_to_openai_function = deprecated(
"0.1.16",
alternative="langchain_core.utils.function_calling.convert_to_openai_function()",
removal="1.0",
)(_convert_python_function_to_openai_function)
def _convert_typed_dict_to_openai_function(typed_dict: type) -> FunctionDescription:
visited: dict = {}
from pydantic.v1 import BaseModel
model = cast(
type[BaseModel],
_convert_any_typed_dicts_to_pydantic(typed_dict, visited=visited),
)
return _convert_pydantic_to_openai_function(model) # type: ignore
_MAX_TYPED_DICT_RECURSION = 25
def _convert_any_typed_dicts_to_pydantic(
type_: type,
*,
visited: dict,
depth: int = 0,
) -> type:
from pydantic.v1 import Field as Field_v1
from pydantic.v1 import create_model as create_model_v1
if type_ in visited:
return visited[type_]
elif depth >= _MAX_TYPED_DICT_RECURSION:
return type_
elif is_typeddict(type_):
typed_dict = type_
docstring = inspect.getdoc(typed_dict)
annotations_ = typed_dict.__annotations__
description, arg_descriptions = _parse_google_docstring(
docstring, list(annotations_)
)
fields: dict = {}
for arg, arg_type in annotations_.items():
if get_origin(arg_type) is Annotated:
annotated_args = get_args(arg_type)
new_arg_type = _convert_any_typed_dicts_to_pydantic(
annotated_args[0], depth=depth + 1, visited=visited
)
field_kwargs = dict(zip(("default", "description"), annotated_args[1:]))
if (field_desc := field_kwargs.get("description")) and not isinstance(
field_desc, str
):
msg = (
f"Invalid annotation for field {arg}. Third argument to "
f"Annotated must be a string description, received value of "
f"type {type(field_desc)}."
)
raise ValueError(msg)
elif arg_desc := arg_descriptions.get(arg):
field_kwargs["description"] = arg_desc
else:
pass
fields[arg] = (new_arg_type, Field_v1(**field_kwargs))
else:
new_arg_type = _convert_any_typed_dicts_to_pydantic(
arg_type, depth=depth + 1, visited=visited
)
field_kwargs = {"default": ...}
if arg_desc := arg_descriptions.get(arg):
field_kwargs["description"] = arg_desc
fields[arg] = (new_arg_type, Field_v1(**field_kwargs))
model = create_model_v1(typed_dict.__name__, **fields)
model.__doc__ = description
visited[typed_dict] = model
return model
elif (origin := get_origin(type_)) and (type_args := get_args(type_)):
subscriptable_origin = _py_38_safe_origin(origin)
type_args = tuple(
_convert_any_typed_dicts_to_pydantic(arg, depth=depth + 1, visited=visited)
for arg in type_args # type: ignore[index]
)
return subscriptable_origin[type_args] # type: ignore[index]
else:
return type_
def _format_tool_to_openai_function(tool: BaseTool) -> FunctionDescription:
"""Format tool into the OpenAI function API.
Args:
tool: The tool to format.
Returns:
The function description.
"""
from langchain_core.tools import simple
is_simple_oai_tool = isinstance(tool, simple.Tool) and not tool.args_schema
if tool.tool_call_schema and not is_simple_oai_tool:
return _convert_pydantic_to_openai_function(
tool.tool_call_schema, name=tool.name, description=tool.description
)
else:
return {
"name": tool.name,
"description": tool.description,
"parameters": {
# This is a hack to get around the fact that some tools
# do not expose an args_schema, and expect an argument
# which is a string.
# And Open AI does not support an array type for the
# parameters.
"properties": {
"__arg1": {"title": "__arg1", "type": "string"},
},
"required": ["__arg1"],
"type": "object",
},
}
format_tool_to_openai_function = deprecated(
"0.1.16",
alternative="langchain_core.utils.function_calling.convert_to_openai_function()",
removal="1.0",
)(_format_tool_to_openai_function)
[docs]
def convert_to_openai_function(
function: Union[dict[str, Any], type, Callable, BaseTool],
*,
strict: Optional[bool] = None,
) -> dict[str, Any]:
"""Convert a raw function/class to an OpenAI function.
Args:
function:
A dictionary, Pydantic BaseModel class, TypedDict class, a LangChain
Tool object, or a Python function. If a dictionary is passed in, it is
assumed to already be a valid OpenAI function, a JSON schema with
top-level 'title' key specified, an Anthropic format
tool, or an Amazon Bedrock Converse format tool.
strict:
If True, model output is guaranteed to exactly match the JSON Schema
provided in the function definition. If None, ``strict`` argument will not
be included in function definition.
Returns:
A dict version of the passed in function which is compatible with the OpenAI
function-calling API.
Raises:
ValueError: If function is not in a supported format.
.. versionchanged:: 0.2.29
``strict`` arg added.
.. versionchanged:: 0.3.13
Support for Anthropic format tools added.
.. versionchanged:: 0.3.14
Support for Amazon Bedrock Converse format tools added.
.. versionchanged:: 0.3.16
'description' and 'parameters' keys are now optional. Only 'name' is
required and guaranteed to be part of the output.
"""
from langchain_core.tools import BaseTool
# an Anthropic format tool
if isinstance(function, dict) and all(
k in function for k in ("name", "input_schema")
):
oai_function = {
"name": function["name"],
"parameters": function["input_schema"],
}
if "description" in function:
oai_function["description"] = function["description"]
# an Amazon Bedrock Converse format tool
elif isinstance(function, dict) and "toolSpec" in function:
oai_function = {
"name": function["toolSpec"]["name"],
"parameters": function["toolSpec"]["inputSchema"]["json"],
}
if "description" in function["toolSpec"]:
oai_function["description"] = function["toolSpec"]["description"]
# already in OpenAI function format
elif isinstance(function, dict) and "name" in function:
oai_function = {
k: v
for k, v in function.items()
if k in ("name", "description", "parameters", "strict")
}
# a JSON schema with title and description
elif isinstance(function, dict) and "title" in function:
function_copy = function.copy()
oai_function = {"name": function_copy.pop("title")}
if "description" in function_copy:
oai_function["description"] = function_copy.pop("description")
if function_copy and "properties" in function_copy:
oai_function["parameters"] = function_copy
elif isinstance(function, type) and is_basemodel_subclass(function):
oai_function = cast(dict, _convert_pydantic_to_openai_function(function))
elif is_typeddict(function):
oai_function = cast(
dict, _convert_typed_dict_to_openai_function(cast(type, function))
)
elif isinstance(function, BaseTool):
oai_function = cast(dict, _format_tool_to_openai_function(function))
elif callable(function):
oai_function = cast(dict, _convert_python_function_to_openai_function(function))
else:
msg = (
f"Unsupported function\n\n{function}\n\nFunctions must be passed in"
" as Dict, pydantic.BaseModel, or Callable. If they're a dict they must"
" either be in OpenAI function format or valid JSON schema with top-level"
" 'title' and 'description' keys."
)
raise ValueError(msg)
if strict is not None:
if "strict" in oai_function and oai_function["strict"] != strict:
msg = (
f"Tool/function already has a 'strict' key wth value "
f"{oai_function['strict']} which is different from the explicit "
f"`strict` arg received {strict=}."
)
raise ValueError(msg)
oai_function["strict"] = strict
if strict:
# As of 08/06/24, OpenAI requires that additionalProperties be supplied and
# set to False if strict is True.
# All properties layer needs 'additionalProperties=False'
oai_function["parameters"] = _recursive_set_additional_properties_false(
oai_function["parameters"]
)
return oai_function
def _parse_google_docstring(
docstring: Optional[str],
args: list[str],
*,
error_on_invalid_docstring: bool = False,
) -> tuple[str, dict]:
"""Parse the function and argument descriptions from the docstring of a function.
Assumes the function docstring follows Google Python style guide.
"""
if docstring:
docstring_blocks = docstring.split("\n\n")
if error_on_invalid_docstring:
filtered_annotations = {
arg for arg in args if arg not in ("run_manager", "callbacks", "return")
}
if filtered_annotations and (
len(docstring_blocks) < 2
or not any(block.startswith("Args:") for block in docstring_blocks[1:])
):
msg = "Found invalid Google-Style docstring."
raise ValueError(msg)
descriptors = []
args_block = None
past_descriptors = False
for block in docstring_blocks:
if block.startswith("Args:"):
args_block = block
break
elif block.startswith(("Returns:", "Example:")):
# Don't break in case Args come after
past_descriptors = True
elif not past_descriptors:
descriptors.append(block)
else:
continue
description = " ".join(descriptors)
else:
if error_on_invalid_docstring:
msg = "Found invalid Google-Style docstring."
raise ValueError(msg)
description = ""
args_block = None
arg_descriptions = {}
if args_block:
arg = None
for line in args_block.split("\n")[1:]:
if ":" in line:
arg, desc = line.split(":", maxsplit=1)
arg = arg.strip()
arg_name, _, _annotations = arg.partition(" ")
if _annotations.startswith("(") and _annotations.endswith(")"):
arg = arg_name
arg_descriptions[arg] = desc.strip()
elif arg:
arg_descriptions[arg] += " " + line.strip()
return description, arg_descriptions
def _py_38_safe_origin(origin: type) -> type:
origin_union_type_map: dict[type, Any] = (
{types.UnionType: Union} if hasattr(types, "UnionType") else {}
)
origin_map: dict[type, Any] = {
dict: dict,
list: list,
tuple: tuple,
set: set,
collections.abc.Iterable: typing.Iterable,
collections.abc.Mapping: typing.Mapping,
collections.abc.Sequence: typing.Sequence,
collections.abc.MutableMapping: typing.MutableMapping,
**origin_union_type_map,
}
return cast(type, origin_map.get(origin, origin))
def _recursive_set_additional_properties_false(
schema: dict[str, Any],
) -> dict[str, Any]:
if isinstance(schema, dict):
# Check if 'required' is a key at the current level or if the schema is empty,
# in which case additionalProperties still needs to be specified.
if "required" in schema or (
"properties" in schema and not schema["properties"]
):
schema["additionalProperties"] = False
# Recursively check 'properties' and 'items' if they exist
if "properties" in schema:
for value in schema["properties"].values():
_recursive_set_additional_properties_false(value)
if "items" in schema:
_recursive_set_additional_properties_false(schema["items"])
return schema