langchain_experimental.autonomous_agents.baby_agi.task_execution ηš„ζΊδ»£η 

from langchain.chains import LLMChain
from langchain_core.language_models import BaseLanguageModel
from langchain_core.prompts import PromptTemplate


[docs] class TaskExecutionChain(LLMChain): """Chain to execute tasks."""
[docs] @classmethod def from_llm(cls, llm: BaseLanguageModel, verbose: bool = True) -> LLMChain: """Get the response parser.""" execution_template = ( "You are an AI who performs one task based on the following objective: " "{objective}." "Take into account these previously completed tasks: {context}." " Your task: {task}. Response:" ) prompt = PromptTemplate( template=execution_template, input_variables=["objective", "context", "task"], ) return cls(prompt=prompt, llm=llm, verbose=verbose)