langchain_experimental.autonomous_agents.hugginggpt.repsonse_generator ηζΊδ»£η
from typing import Any, List, Optional
from langchain.base_language import BaseLanguageModel
from langchain.chains import LLMChain
from langchain_core.callbacks.manager import Callbacks
from langchain_core.prompts import PromptTemplate
[docs]
class ResponseGenerationChain(LLMChain):
"""Chain to execute tasks."""
[docs]
@classmethod
def from_llm(cls, llm: BaseLanguageModel, verbose: bool = True) -> LLMChain:
execution_template = (
"The AI assistant has parsed the user input into several tasks"
"and executed them. The results are as follows:\n"
"{task_execution}"
"\nPlease summarize the results and generate a response."
)
prompt = PromptTemplate(
template=execution_template,
input_variables=["task_execution"],
)
return cls(prompt=prompt, llm=llm, verbose=verbose)
[docs]
class ResponseGenerator:
"""Generates a response based on the input."""
[docs]
def __init__(self, llm_chain: LLMChain, stop: Optional[List] = None):
self.llm_chain = llm_chain
self.stop = stop
[docs]
def generate(self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any) -> str:
"""Given input, decided what to do."""
llm_response = self.llm_chain.run(**inputs, stop=self.stop, callbacks=callbacks)
return llm_response
[docs]
def load_response_generator(llm: BaseLanguageModel) -> ResponseGenerator:
"""Load the ResponseGenerator."""
llm_chain = ResponseGenerationChain.from_llm(llm)
return ResponseGenerator(
llm_chain=llm_chain,
)