langchain_experimental.graph_transformers.gliner ηš„ζΊδ»£η 

from typing import Any, Dict, List, Sequence, Union

from langchain_community.graphs.graph_document import GraphDocument, Node, Relationship
from langchain_core.documents import Document

DEFAULT_NODE_TYPE = "Node"


[docs] class GlinerGraphTransformer: """ A transformer class for converting documents into graph structures using the GLiNER and GLiREL models. This class leverages GLiNER for named entity recognition and GLiREL for relationship extraction from text documents, converting them into a graph format. The extracted entities and relationships are filtered based on specified confidence thresholds and allowed types. For more details on GLiNER and GLiREL, visit their respective repositories: GLiNER: https://github.com/urchade/GLiNER GLiREL: https://github.com/jackboyla/GLiREL/tree/main Args: allowed_nodes (List[str]): A list of allowed node types for entity extraction. allowed_relationships (Union[List[str], Dict[str, Any]]): A list of allowed relationship types or a dictionary with additional configuration for relationship extraction. gliner_model (str): The name of the pretrained GLiNER model to use. Default is "urchade/gliner_mediumv2.1". glirel_model (str): The name of the pretrained GLiREL model to use. Default is "jackboyla/glirel_beta". entity_confidence_threshold (float): The confidence threshold for filtering extracted entities. Default is 0.1. relationship_confidence_threshold (float): The confidence threshold for filtering extracted relationships. Default is 0.1. device (str): The device to use for model inference ('cpu' or 'cuda'). Default is "cpu". ignore_self_loops (bool): Whether to ignore relationships where the source and target nodes are the same. Default is True. """
[docs] def __init__( self, allowed_nodes: List[str], allowed_relationships: Union[List[str], Dict[str, Any]], gliner_model: str = "urchade/gliner_mediumv2.1", glirel_model: str = "jackboyla/glirel_beta", entity_confidence_threshold: float = 0.1, relationship_confidence_threshold: float = 0.1, device: str = "cpu", ignore_self_loops: bool = True, ) -> None: try: import gliner_spacy # type: ignore # noqa: F401 except ImportError: raise ImportError( "Could not import gliner-spacy python package. " "Please install it with `pip install gliner-spacy`." ) try: import spacy # type: ignore except ImportError: raise ImportError( "Could not import spacy python package. " "Please install it with `pip install spacy`." ) try: import glirel # type: ignore # noqa: F401 except ImportError: raise ImportError( "Could not import gliner python package. " "Please install it with `pip install gliner`." ) gliner_config = { "gliner_model": gliner_model, "chunk_size": 250, "labels": allowed_nodes, "style": "ent", "threshold": entity_confidence_threshold, "map_location": device, } glirel_config = {"model": glirel_model, "device": device} self.nlp = spacy.blank("en") # Add the GliNER component to the pipeline self.nlp.add_pipe("gliner_spacy", config=gliner_config) # Add the GLiREL component to the pipeline self.nlp.add_pipe("glirel", after="gliner_spacy", config=glirel_config) self.allowed_relationships = ( {"glirel_labels": allowed_relationships} if isinstance(allowed_relationships, list) else allowed_relationships ) self.relationship_confidence_threshold = relationship_confidence_threshold self.ignore_self_loops = ignore_self_loops
[docs] def process_document(self, document: Document) -> GraphDocument: # Extraction as SpaCy pipeline docs = list( self.nlp.pipe( [(document.page_content, self.allowed_relationships)], as_tuples=True ) ) # Deduplicate nodes deduplicated_nodes = {(node.text, node.label_) for node in docs[0][0].ents} # Step 2: Convert back to Node objects nodes = [ Node( id=node_text, type=node_label, ) for node_text, node_label in deduplicated_nodes ] # Convert relationships relationships = [] relations = docs[0][0]._.relations # Deduplicate based on label, head text, and tail text # Use a list comprehension with max() function deduplicated_rels = [] seen = set() for item in relations: key = (tuple(item["head_text"]), tuple(item["tail_text"]), item["label"]) if key not in seen: seen.add(key) # Find all items matching the current key matching_items = [ rel for rel in relations if (tuple(rel["head_text"]), tuple(rel["tail_text"]), rel["label"]) == key ] # Find the item with the maximum score max_item = max(matching_items, key=lambda x: x["score"]) deduplicated_rels.append(max_item) for rel in deduplicated_rels: # Relationship confidence threshold if rel["score"] < self.relationship_confidence_threshold: continue source_id = docs[0][0][rel["head_pos"][0] : rel["head_pos"][1]].text target_id = docs[0][0][rel["tail_pos"][0] : rel["tail_pos"][1]].text # Ignore self loops if self.ignore_self_loops and source_id == target_id: continue source_node = [n for n in nodes if n.id == source_id][0] target_node = [n for n in nodes if n.id == target_id][0] relationships.append( Relationship( source=source_node, target=target_node, type=rel["label"].replace(" ", "_").upper(), ) ) return GraphDocument(nodes=nodes, relationships=relationships, source=document)
[docs] def convert_to_graph_documents( self, documents: Sequence[Document] ) -> List[GraphDocument]: """Convert a sequence of documents into graph documents. Args: documents (Sequence[Document]): The original documents. kwargs: Additional keyword arguments. Returns: Sequence[GraphDocument]: The transformed documents as graphs. """ results = [] for document in documents: graph_document = self.process_document(document) results.append(graph_document) return results