langchain_experimental.llms.jsonformer_decoder ηζΊδ»£η
"""Experimental implementation of jsonformer wrapped LLM."""
from __future__ import annotations
import json
from typing import TYPE_CHECKING, Any, List, Optional, cast
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain_core.callbacks.manager import CallbackManagerForLLMRun
from pydantic import Field, model_validator
if TYPE_CHECKING:
import jsonformer
[docs]
def import_jsonformer() -> jsonformer:
"""Lazily import of the jsonformer package."""
try:
import jsonformer
except ImportError:
raise ImportError(
"Could not import jsonformer python package. "
"Please install it with `pip install jsonformer`."
)
return jsonformer
[docs]
class JsonFormer(HuggingFacePipeline):
"""Jsonformer wrapped LLM using HuggingFace Pipeline API.
This pipeline is experimental and not yet stable.
"""
json_schema: dict = Field(..., description="The JSON Schema to complete.")
max_new_tokens: int = Field(
default=200, description="Maximum number of new tokens to generate."
)
debug: bool = Field(default=False, description="Debug mode.")
@model_validator(mode="before")
@classmethod
def check_jsonformer_installation(cls, values: dict) -> Any:
import_jsonformer()
return values
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
jsonformer = import_jsonformer()
from transformers import Text2TextGenerationPipeline
pipeline = cast(Text2TextGenerationPipeline, self.pipeline)
model = jsonformer.Jsonformer(
model=pipeline.model,
tokenizer=pipeline.tokenizer,
json_schema=self.json_schema,
prompt=prompt,
max_number_tokens=self.max_new_tokens,
debug=self.debug,
)
text = model()
return json.dumps(text)