langchain_experimental.plan_and_execute.planners.base ηš„ζΊδ»£η 

from abc import abstractmethod
from typing import Any, List, Optional

from langchain.chains.llm import LLMChain
from langchain_core.callbacks.manager import Callbacks
from pydantic import BaseModel

from langchain_experimental.plan_and_execute.schema import Plan, PlanOutputParser


[docs] class BasePlanner(BaseModel): """Base planner."""
[docs] @abstractmethod def plan(self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any) -> Plan: """Given input, decide what to do."""
[docs] @abstractmethod async def aplan( self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any ) -> Plan: """Given input, asynchronously decide what to do."""
[docs] class LLMPlanner(BasePlanner): """LLM planner.""" llm_chain: LLMChain """The LLM chain to use.""" output_parser: PlanOutputParser """The output parser to use.""" stop: Optional[List] = None """The stop list to use."""
[docs] def plan(self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any) -> Plan: """Given input, decide what to do.""" llm_response = self.llm_chain.run(**inputs, stop=self.stop, callbacks=callbacks) return self.output_parser.parse(llm_response)
[docs] async def aplan( self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any ) -> Plan: """Given input, asynchronously decide what to do.""" llm_response = await self.llm_chain.arun( **inputs, stop=self.stop, callbacks=callbacks ) return self.output_parser.parse(llm_response)