langchain_experimental.prompt_injection_identifier.hugging_face_identifier ηζΊδ»£η
"""Tool for the identification of prompt injection attacks."""
from __future__ import annotations
from typing import TYPE_CHECKING, Any, Union
from langchain_core.tools import BaseTool
from pydantic import Field, model_validator
if TYPE_CHECKING:
from transformers import Pipeline
[docs]
class PromptInjectionException(ValueError):
"""Exception raised when prompt injection attack is detected."""
def __init__(
self, message: str = "Prompt injection attack detected", score: float = 1.0
):
self.message = message
self.score = score
super().__init__(self.message)
def _model_default_factory(
model_name: str = "protectai/deberta-v3-base-prompt-injection-v2",
) -> Pipeline:
try:
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
pipeline,
)
except ImportError as e:
raise ImportError(
"Cannot import transformers, please install with "
"`pip install transformers`."
) from e
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
return pipeline(
"text-classification",
model=model,
tokenizer=tokenizer,
max_length=512, # default length of BERT models
truncation=True, # otherwise it will fail on long prompts
)
[docs]
class HuggingFaceInjectionIdentifier(BaseTool):
"""Tool that uses HuggingFace Prompt Injection model to
detect prompt injection attacks."""
name: str = "hugging_face_injection_identifier"
description: str = (
"A wrapper around HuggingFace Prompt Injection security model. "
"Useful for when you need to ensure that prompt is free of injection attacks. "
"Input should be any message from the user."
)
model: Union[Pipeline, str, None] = Field(default_factory=_model_default_factory)
"""Model to use for prompt injection detection.
Can be specified as transformers Pipeline or string. String should correspond to the
model name of a text-classification transformers model. Defaults to
``protectai/deberta-v3-base-prompt-injection-v2`` model.
"""
threshold: float = Field(
description="Threshold for prompt injection detection.", default=0.5
)
"""Threshold for prompt injection detection.
Defaults to 0.5."""
injection_label: str = Field(
description="Label of the injection for prompt injection detection.",
default="INJECTION",
)
"""Label for prompt injection detection model.
Defaults to ``INJECTION``. Value depends on the model used."""
@model_validator(mode="before")
@classmethod
def validate_environment(cls, values: dict) -> Any:
if isinstance(values.get("model"), str):
values["model"] = _model_default_factory(model_name=values["model"])
return values
def _run(self, query: str) -> str:
"""Use the tool."""
result = self.model(query) # type: ignore
score = (
result[0]["score"]
if result[0]["label"] == self.injection_label
else 1 - result[0]["score"]
)
if score > self.threshold:
raise PromptInjectionException("Prompt injection attack detected", score)
return query