langchain_fireworks.embeddings ηζΊδ»£η
from typing import List
from langchain_core.embeddings import Embeddings
from langchain_core.utils import secret_from_env
from openai import OpenAI
from pydantic import BaseModel, ConfigDict, Field, SecretStr, model_validator
from typing_extensions import Self
# type: ignore
[docs]
class FireworksEmbeddings(BaseModel, Embeddings):
"""Fireworks embedding model integration.
Setup:
Install ``langchain_fireworks`` and set environment variable
``FIREWORKS_API_KEY``.
.. code-block:: bash
pip install -U langchain_fireworks
export FIREWORKS_API_KEY="your-api-key"
Key init args β completion params:
model: str
Name of Fireworks model to use.
Key init args β client params:
fireworks_api_key: SecretStr
Fireworks API key.
See full list of supported init args and their descriptions in the params section.
Instantiate:
.. code-block:: python
from langchain_fireworks import FireworksEmbeddings
model = FireworksEmbeddings(
model='nomic-ai/nomic-embed-text-v1.5'
# Use FIREWORKS_API_KEY env var or pass it in directly
# fireworks_api_key="..."
)
Embed multiple texts:
.. code-block:: python
vectors = embeddings.embed_documents(['hello', 'goodbye'])
# Showing only the first 3 coordinates
print(len(vectors))
print(vectors[0][:3])
.. code-block:: python
2
[-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915]
Embed single text:
.. code-block:: python
input_text = "The meaning of life is 42"
vector = embeddings.embed_query('hello')
print(vector[:3])
.. code-block:: python
[-0.024603435769677162, -0.007543657906353474, 0.0039630369283258915]
"""
client: OpenAI = Field(default=None, exclude=True) # type: ignore[assignment] # :meta private:
fireworks_api_key: SecretStr = Field(
alias="api_key",
default_factory=secret_from_env(
"FIREWORKS_API_KEY",
default="",
),
)
"""Fireworks API key.
Automatically read from env variable `FIREWORKS_API_KEY` if not provided.
"""
model: str = "nomic-ai/nomic-embed-text-v1.5"
model_config = ConfigDict(
populate_by_name=True,
arbitrary_types_allowed=True,
)
@model_validator(mode="after")
def validate_environment(self) -> Self:
"""Validate environment variables."""
self.client = OpenAI(
api_key=self.fireworks_api_key.get_secret_value(),
base_url="https://api.fireworks.ai/inference/v1",
)
return self
[docs]
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Embed search docs."""
return [
i.embedding
for i in self.client.embeddings.create(input=texts, model=self.model).data
]
[docs]
def embed_query(self, text: str) -> List[float]:
"""Embed query text."""
return self.embed_documents([text])[0]