langchain_google_genai.chat_models ηš„ζΊδ»£η 

from __future__ import annotations

import asyncio
import json
import logging
import uuid
import warnings
from operator import itemgetter
from typing import (
    Any,
    AsyncIterator,
    Callable,
    Dict,
    Iterator,
    List,
    Mapping,
    Optional,
    Sequence,
    Tuple,
    Type,
    Union,
    cast,
)

import google.api_core

# TODO: remove ignore once the google package is published with types
import proto  # type: ignore[import]
from google.ai.generativelanguage_v1beta import (
    GenerativeServiceAsyncClient as v1betaGenerativeServiceAsyncClient,
)
from google.ai.generativelanguage_v1beta.types import (
    Blob,
    Candidate,
    Content,
    FileData,
    FunctionCall,
    FunctionResponse,
    GenerateContentRequest,
    GenerateContentResponse,
    GenerationConfig,
    Part,
    SafetySetting,
    ToolConfig,
    VideoMetadata,
)
from google.generativeai.caching import CachedContent  # type: ignore[import]
from google.generativeai.types import Tool as GoogleTool  # type: ignore[import]
from google.generativeai.types import caching_types, content_types
from google.generativeai.types.content_types import (  # type: ignore[import]
    FunctionDeclarationType,
    ToolDict,
)
from langchain_core.callbacks.manager import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import BaseChatModel, LangSmithParams
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    FunctionMessage,
    HumanMessage,
    SystemMessage,
    ToolMessage,
)
from langchain_core.messages.ai import UsageMetadata
from langchain_core.messages.tool import invalid_tool_call, tool_call, tool_call_chunk
from langchain_core.output_parsers.base import OutputParserLike
from langchain_core.output_parsers.openai_tools import (
    JsonOutputToolsParser,
    PydanticToolsParser,
    parse_tool_calls,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.runnables import Runnable, RunnablePassthrough
from langchain_core.utils import secret_from_env
from langchain_core.utils.function_calling import convert_to_openai_tool
from pydantic import (
    BaseModel,
    ConfigDict,
    Field,
    SecretStr,
    model_validator,
)
from tenacity import (
    before_sleep_log,
    retry,
    retry_if_exception_type,
    stop_after_attempt,
    wait_exponential,
)
from typing_extensions import Self

from langchain_google_genai._common import (
    GoogleGenerativeAIError,
    SafetySettingDict,
    get_client_info,
)
from langchain_google_genai._function_utils import (
    _tool_choice_to_tool_config,
    _ToolChoiceType,
    _ToolConfigDict,
    convert_to_genai_function_declarations,
    is_basemodel_subclass_safe,
    tool_to_dict,
)
from langchain_google_genai._image_utils import ImageBytesLoader
from langchain_google_genai.llms import _BaseGoogleGenerativeAI

from . import _genai_extension as genaix

logger = logging.getLogger(__name__)


[docs] class ChatGoogleGenerativeAIError(GoogleGenerativeAIError): """ Custom exception class for errors associated with the `Google GenAI` API. This exception is raised when there are specific issues related to the Google genai API usage in the ChatGoogleGenerativeAI class, such as unsupported message types or roles. """
def _create_retry_decorator() -> Callable[[Any], Any]: """ Creates and returns a preconfigured tenacity retry decorator. The retry decorator is configured to handle specific Google API exceptions such as ResourceExhausted and ServiceUnavailable. It uses an exponential backoff strategy for retries. Returns: Callable[[Any], Any]: A retry decorator configured for handling specific Google API exceptions. """ multiplier = 2 min_seconds = 1 max_seconds = 60 max_retries = 2 return retry( reraise=True, stop=stop_after_attempt(max_retries), wait=wait_exponential(multiplier=multiplier, min=min_seconds, max=max_seconds), retry=( retry_if_exception_type(google.api_core.exceptions.ResourceExhausted) | retry_if_exception_type(google.api_core.exceptions.ServiceUnavailable) | retry_if_exception_type(google.api_core.exceptions.GoogleAPIError) ), before_sleep=before_sleep_log(logger, logging.WARNING), ) def _chat_with_retry(generation_method: Callable, **kwargs: Any) -> Any: """ Executes a chat generation method with retry logic using tenacity. This function is a wrapper that applies a retry mechanism to a provided chat generation function. It is useful for handling intermittent issues like network errors or temporary service unavailability. Args: generation_method (Callable): The chat generation method to be executed. **kwargs (Any): Additional keyword arguments to pass to the generation method. Returns: Any: The result from the chat generation method. """ retry_decorator = _create_retry_decorator() @retry_decorator def _chat_with_retry(**kwargs: Any) -> Any: try: return generation_method(**kwargs) # Do not retry for these errors. except google.api_core.exceptions.FailedPrecondition as exc: if "location is not supported" in exc.message: error_msg = ( "Your location is not supported by google-generativeai " "at the moment. Try to use ChatVertexAI LLM from " "langchain_google_vertexai." ) raise ValueError(error_msg) except google.api_core.exceptions.InvalidArgument as e: raise ChatGoogleGenerativeAIError( f"Invalid argument provided to Gemini: {e}" ) from e except Exception as e: raise e return _chat_with_retry(**kwargs) async def _achat_with_retry(generation_method: Callable, **kwargs: Any) -> Any: """ Executes a chat generation method with retry logic using tenacity. This function is a wrapper that applies a retry mechanism to a provided chat generation function. It is useful for handling intermittent issues like network errors or temporary service unavailability. Args: generation_method (Callable): The chat generation method to be executed. **kwargs (Any): Additional keyword arguments to pass to the generation method. Returns: Any: The result from the chat generation method. """ retry_decorator = _create_retry_decorator() from google.api_core.exceptions import InvalidArgument # type: ignore @retry_decorator async def _achat_with_retry(**kwargs: Any) -> Any: try: return await generation_method(**kwargs) except InvalidArgument as e: # Do not retry for these errors. raise ChatGoogleGenerativeAIError( f"Invalid argument provided to Gemini: {e}" ) from e except Exception as e: raise e return await _achat_with_retry(**kwargs) def _is_openai_parts_format(part: dict) -> bool: return "type" in part def _convert_to_parts( raw_content: Union[str, Sequence[Union[str, dict]]], ) -> List[Part]: """Converts a list of LangChain messages into a google parts.""" parts = [] content = [raw_content] if isinstance(raw_content, str) else raw_content image_loader = ImageBytesLoader() for part in content: if isinstance(part, str): parts.append(Part(text=part)) elif isinstance(part, Mapping): # OpenAI Format if _is_openai_parts_format(part): if part["type"] == "text": parts.append(Part(text=part["text"])) elif part["type"] == "image_url": img_url = part["image_url"] if isinstance(img_url, dict): if "url" not in img_url: raise ValueError( f"Unrecognized message image format: {img_url}" ) img_url = img_url["url"] parts.append(image_loader.load_part(img_url)) # Handle media type like LangChain.js # https://github.com/langchain-ai/langchainjs/blob/e536593e2585f1dd7b0afc187de4d07cb40689ba/libs/langchain-google-common/src/utils/gemini.ts#L93-L106 elif part["type"] == "media": if "mime_type" not in part: raise ValueError(f"Missing mime_type in media part: {part}") mime_type = part["mime_type"] media_part = Part() if "data" in part: media_part.inline_data = Blob( data=part["data"], mime_type=mime_type ) elif "file_uri" in part: media_part.file_data = FileData( file_uri=part["file_uri"], mime_type=mime_type ) else: raise ValueError( f"Media part must have either data or file_uri: {part}" ) if "video_metadata" in part: metadata = VideoMetadata(part["video_metadata"]) media_part.video_metadata = metadata parts.append(media_part) else: raise ValueError( f"Unrecognized message part type: {part['type']}. Only text, " f"image_url, and media types are supported." ) else: # Yolo logger.warning( "Unrecognized message part format. Assuming it's a text part." ) parts.append(Part(text=str(part))) else: # TODO: Maybe some of Google's native stuff # would hit this branch. raise ChatGoogleGenerativeAIError( "Gemini only supports text and inline_data parts." ) return parts def _parse_chat_history( input_messages: Sequence[BaseMessage], convert_system_message_to_human: bool = False ) -> Tuple[Optional[Content], List[Content]]: messages: List[Content] = [] if convert_system_message_to_human: warnings.warn("Convert_system_message_to_human will be deprecated!") system_instruction: Optional[Content] = None for i, message in enumerate(input_messages): if i == 0 and isinstance(message, SystemMessage): system_instruction = Content(parts=_convert_to_parts(message.content)) continue elif isinstance(message, AIMessage): role = "model" if message.tool_calls: parts = [] for tool_call in message.tool_calls: function_call = FunctionCall( { "name": tool_call["name"], "args": tool_call["args"], } ) parts.append(Part(function_call=function_call)) elif raw_function_call := message.additional_kwargs.get("function_call"): function_call = FunctionCall( { "name": raw_function_call["name"], "args": json.loads(raw_function_call["arguments"]), } ) parts = [Part(function_call=function_call)] else: parts = _convert_to_parts(message.content) elif isinstance(message, HumanMessage): role = "user" parts = _convert_to_parts(message.content) if i == 1 and convert_system_message_to_human and system_instruction: parts = [p for p in system_instruction.parts] + parts system_instruction = None elif isinstance(message, FunctionMessage): role = "user" response: Any if not isinstance(message.content, str): response = message.content else: try: response = json.loads(message.content) except json.JSONDecodeError: response = message.content # leave as str representation parts = [ Part( function_response=FunctionResponse( name=message.name, response=( {"output": response} if not isinstance(response, dict) else response ), ) ) ] elif isinstance(message, ToolMessage): role = "user" prev_message: Optional[BaseMessage] = ( input_messages[i - 1] if i > 0 else None ) if ( prev_message and isinstance(prev_message, AIMessage) and prev_message.tool_calls ): # message.name can be null for ToolMessage name: str = prev_message.tool_calls[0]["name"] else: name = message.name # type: ignore tool_response: Any if not isinstance(message.content, str): tool_response = message.content else: try: tool_response = json.loads(message.content) except json.JSONDecodeError: tool_response = message.content # leave as str representation parts = [ Part( function_response=FunctionResponse( name=name, response=( {"output": tool_response} if not isinstance(tool_response, dict) else tool_response ), ) ) ] else: raise ValueError( f"Unexpected message with type {type(message)} at the position {i}." ) messages.append(Content(role=role, parts=parts)) return system_instruction, messages def _parse_response_candidate( response_candidate: Candidate, streaming: bool = False ) -> AIMessage: content: Union[None, str, List[str]] = None additional_kwargs = {} tool_calls = [] invalid_tool_calls = [] tool_call_chunks = [] for part in response_candidate.content.parts: try: text: Optional[str] = part.text # Remove erroneous newline character if present if text is not None: text = text.rstrip("\n") except AttributeError: text = None if text is not None: if not content: content = text elif isinstance(content, str) and text: content = [content, text] elif isinstance(content, list) and text: content.append(text) elif text: raise Exception("Unexpected content type") if part.function_call: function_call = {"name": part.function_call.name} # dump to match other function calling llm for now function_call_args_dict = proto.Message.to_dict(part.function_call)["args"] function_call["arguments"] = json.dumps( {k: function_call_args_dict[k] for k in function_call_args_dict} ) additional_kwargs["function_call"] = function_call if streaming: tool_call_chunks.append( tool_call_chunk( name=function_call.get("name"), args=function_call.get("arguments"), id=function_call.get("id", str(uuid.uuid4())), index=function_call.get("index"), # type: ignore ) ) else: try: tool_call_dict = parse_tool_calls( [{"function": function_call}], return_id=False, )[0] except Exception as e: invalid_tool_calls.append( invalid_tool_call( name=function_call.get("name"), args=function_call.get("arguments"), id=function_call.get("id", str(uuid.uuid4())), error=str(e), ) ) else: tool_calls.append( tool_call( name=tool_call_dict["name"], args=tool_call_dict["args"], id=tool_call_dict.get("id", str(uuid.uuid4())), ) ) if content is None: content = "" if streaming: return AIMessageChunk( content=cast(Union[str, List[Union[str, Dict[Any, Any]]]], content), additional_kwargs=additional_kwargs, tool_call_chunks=tool_call_chunks, ) return AIMessage( content=cast(Union[str, List[Union[str, Dict[Any, Any]]]], content), additional_kwargs=additional_kwargs, tool_calls=tool_calls, invalid_tool_calls=invalid_tool_calls, ) def _response_to_result( response: GenerateContentResponse, stream: bool = False, prev_usage: Optional[UsageMetadata] = None, ) -> ChatResult: """Converts a PaLM API response into a LangChain ChatResult.""" llm_output = {"prompt_feedback": proto.Message.to_dict(response.prompt_feedback)} # previous usage metadata needs to be subtracted because gemini api returns # already-accumulated token counts with each chunk prev_input_tokens = prev_usage["input_tokens"] if prev_usage else 0 prev_output_tokens = prev_usage["output_tokens"] if prev_usage else 0 prev_total_tokens = prev_usage["total_tokens"] if prev_usage else 0 # Get usage metadata try: input_tokens = response.usage_metadata.prompt_token_count output_tokens = response.usage_metadata.candidates_token_count total_tokens = response.usage_metadata.total_token_count cache_read_tokens = response.usage_metadata.cached_content_token_count if input_tokens + output_tokens + cache_read_tokens + total_tokens > 0: lc_usage = UsageMetadata( input_tokens=input_tokens - prev_input_tokens, output_tokens=output_tokens - prev_output_tokens, total_tokens=total_tokens - prev_total_tokens, input_token_details={"cache_read": cache_read_tokens}, ) else: lc_usage = None except AttributeError: lc_usage = None generations: List[ChatGeneration] = [] for candidate in response.candidates: generation_info = {} if candidate.finish_reason: generation_info["finish_reason"] = candidate.finish_reason.name generation_info["safety_ratings"] = [ proto.Message.to_dict(safety_rating, use_integers_for_enums=False) for safety_rating in candidate.safety_ratings ] message = _parse_response_candidate(candidate, streaming=stream) message.usage_metadata = lc_usage if stream: generations.append( ChatGenerationChunk( message=cast(AIMessageChunk, message), generation_info=generation_info, ) ) else: generations.append( ChatGeneration(message=message, generation_info=generation_info) ) if not response.candidates: # Likely a "prompt feedback" violation (e.g., toxic input) # Raising an error would be different than how OpenAI handles it, # so we'll just log a warning and continue with an empty message. logger.warning( "Gemini produced an empty response. Continuing with empty message\n" f"Feedback: {response.prompt_feedback}" ) if stream: generations = [ ChatGenerationChunk( message=AIMessageChunk(content=""), generation_info={} ) ] else: generations = [ChatGeneration(message=AIMessage(""), generation_info={})] return ChatResult(generations=generations, llm_output=llm_output) def _is_event_loop_running() -> bool: try: asyncio.get_running_loop() return True except RuntimeError: return False
[docs] class ChatGoogleGenerativeAI(_BaseGoogleGenerativeAI, BaseChatModel): """`Google AI` chat models integration. Instantiation: To use, you must have either: 1. The ``GOOGLE_API_KEY`` environment variable set with your API key, or 2. Pass your API key using the google_api_key kwarg to the ChatGoogleGenerativeAI constructor. .. code-block:: python from langchain_google_genai import ChatGoogleGenerativeAI llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro") llm.invoke("Write me a ballad about LangChain") Invoke: .. code-block:: python messages = [ ("system", "Translate the user sentence to French."), ("human", "I love programming."), ] llm.invoke(messages) .. code-block:: python AIMessage( content="J'adore programmer. \\n", response_metadata={'prompt_feedback': {'block_reason': 0, 'safety_ratings': []}, 'finish_reason': 'STOP', 'safety_ratings': [{'category': 'HARM_CATEGORY_SEXUALLY_EXPLICIT', 'probability': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_HATE_SPEECH', 'probability': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_HARASSMENT', 'probability': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_DANGEROUS_CONTENT', 'probability': 'NEGLIGIBLE', 'blocked': False}]}, id='run-56cecc34-2e54-4b52-a974-337e47008ad2-0', usage_metadata={'input_tokens': 18, 'output_tokens': 5, 'total_tokens': 23} ) Stream: .. code-block:: python for chunk in llm.stream(messages): print(chunk) .. code-block:: python AIMessageChunk(content='J', response_metadata={'finish_reason': 'STOP', 'safety_ratings': []}, id='run-e905f4f4-58cb-4a10-a960-448a2bb649e3', usage_metadata={'input_tokens': 18, 'output_tokens': 1, 'total_tokens': 19}) AIMessageChunk(content="'adore programmer. \n", response_metadata={'finish_reason': 'STOP', 'safety_ratings': [{'category': 'HARM_CATEGORY_SEXUALLY_EXPLICIT', 'probability': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_HATE_SPEECH', 'probability': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_HARASSMENT', 'probability': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_DANGEROUS_CONTENT', 'probability': 'NEGLIGIBLE', 'blocked': False}]}, id='run-e905f4f4-58cb-4a10-a960-448a2bb649e3', usage_metadata={'input_tokens': 18, 'output_tokens': 5, 'total_tokens': 23}) .. code-block:: python stream = llm.stream(messages) full = next(stream) for chunk in stream: full += chunk full .. code-block:: python AIMessageChunk( content="J'adore programmer. \\n", response_metadata={'finish_reason': 'STOPSTOP', 'safety_ratings': [{'category': 'HARM_CATEGORY_SEXUALLY_EXPLICIT', 'probability': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_HATE_SPEECH', 'probability': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_HARASSMENT', 'probability': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_DANGEROUS_CONTENT', 'probability': 'NEGLIGIBLE', 'blocked': False}]}, id='run-3ce13a42-cd30-4ad7-a684-f1f0b37cdeec', usage_metadata={'input_tokens': 36, 'output_tokens': 6, 'total_tokens': 42} ) Async: .. code-block:: python await llm.ainvoke(messages) # stream: # async for chunk in (await llm.astream(messages)) # batch: # await llm.abatch([messages]) Tool calling: .. code-block:: python from pydantic import BaseModel, Field class GetWeather(BaseModel): '''Get the current weather in a given location''' location: str = Field( ..., description="The city and state, e.g. San Francisco, CA" ) class GetPopulation(BaseModel): '''Get the current population in a given location''' location: str = Field( ..., description="The city and state, e.g. San Francisco, CA" ) llm_with_tools = llm.bind_tools([GetWeather, GetPopulation]) ai_msg = llm_with_tools.invoke( "Which city is hotter today and which is bigger: LA or NY?" ) ai_msg.tool_calls .. code-block:: python [{'name': 'GetWeather', 'args': {'location': 'Los Angeles, CA'}, 'id': 'c186c99f-f137-4d52-947f-9e3deabba6f6'}, {'name': 'GetWeather', 'args': {'location': 'New York City, NY'}, 'id': 'cebd4a5d-e800-4fa5-babd-4aa286af4f31'}, {'name': 'GetPopulation', 'args': {'location': 'Los Angeles, CA'}, 'id': '4f92d897-f5e4-4d34-a3bc-93062c92591e'}, {'name': 'GetPopulation', 'args': {'location': 'New York City, NY'}, 'id': '634582de-5186-4e4b-968b-f192f0a93678'}] Structured output: .. code-block:: python from typing import Optional from pydantic import BaseModel, Field class Joke(BaseModel): '''Joke to tell user.''' setup: str = Field(description="The setup of the joke") punchline: str = Field(description="The punchline to the joke") rating: Optional[int] = Field(description="How funny the joke is, from 1 to 10") structured_llm = llm.with_structured_output(Joke) structured_llm.invoke("Tell me a joke about cats") .. code-block:: python Joke( setup='Why are cats so good at video games?', punchline='They have nine lives on the internet', rating=None ) Image input: .. code-block:: python import base64 import httpx from langchain_core.messages import HumanMessage image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg" image_data = base64.b64encode(httpx.get(image_url).content).decode("utf-8") message = HumanMessage( content=[ {"type": "text", "text": "describe the weather in this image"}, { "type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image_data}"}, }, ] ) ai_msg = llm.invoke([message]) ai_msg.content .. code-block:: python 'The weather in this image appears to be sunny and pleasant. The sky is a bright blue with scattered white clouds, suggesting fair weather. The lush green grass and trees indicate a warm and possibly slightly breezy day. There are no signs of rain or storms. \n' Token usage: .. code-block:: python ai_msg = llm.invoke(messages) ai_msg.usage_metadata .. code-block:: python {'input_tokens': 18, 'output_tokens': 5, 'total_tokens': 23} Response metadata .. code-block:: python ai_msg = llm.invoke(messages) ai_msg.response_metadata .. code-block:: python { 'prompt_feedback': {'block_reason': 0, 'safety_ratings': []}, 'finish_reason': 'STOP', 'safety_ratings': [{'category': 'HARM_CATEGORY_SEXUALLY_EXPLICIT', 'probability': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_HATE_SPEECH', 'probability': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_HARASSMENT', 'probability': 'NEGLIGIBLE', 'blocked': False}, {'category': 'HARM_CATEGORY_DANGEROUS_CONTENT', 'probability': 'NEGLIGIBLE', 'blocked': False}] } """ # noqa: E501 client: Any = Field(default=None, exclude=True) #: :meta private: async_client_running: Any = Field(default=None, exclude=True) #: :meta private: google_api_key: Optional[SecretStr] = Field( alias="api_key", default_factory=secret_from_env("GOOGLE_API_KEY", default=None) ) """Google AI API key. If not specified will be read from env var ``GOOGLE_API_KEY``.""" default_metadata: Sequence[Tuple[str, str]] = Field( default_factory=list ) #: :meta private: convert_system_message_to_human: bool = False """Whether to merge any leading SystemMessage into the following HumanMessage. Gemini does not support system messages; any unsupported messages will raise an error.""" cached_content: Optional[str] = None """The name of the cached content used as context to serve the prediction. Note: only used in explicit caching, where users can have control over caching (e.g. what content to cache) and enjoy guaranteed cost savings. Format: ``cachedContents/{cachedContent}``. """ model_config = ConfigDict( populate_by_name=True, ) @property def lc_secrets(self) -> Dict[str, str]: return {"google_api_key": "GOOGLE_API_KEY"} @property def _llm_type(self) -> str: return "chat-google-generative-ai" @classmethod def is_lc_serializable(self) -> bool: return True @model_validator(mode="after") def validate_environment(self) -> Self: """Validates params and passes them to google-generativeai package.""" if self.temperature is not None and not 0 <= self.temperature <= 1: raise ValueError("temperature must be in the range [0.0, 1.0]") if self.top_p is not None and not 0 <= self.top_p <= 1: raise ValueError("top_p must be in the range [0.0, 1.0]") if self.top_k is not None and self.top_k <= 0: raise ValueError("top_k must be positive") if not self.model.startswith("models/"): self.model = f"models/{self.model}" additional_headers = self.additional_headers or {} self.default_metadata = tuple(additional_headers.items()) client_info = get_client_info("ChatGoogleGenerativeAI") google_api_key = None if not self.credentials: if isinstance(self.google_api_key, SecretStr): google_api_key = self.google_api_key.get_secret_value() else: google_api_key = self.google_api_key transport: Optional[str] = self.transport self.client = genaix.build_generative_service( credentials=self.credentials, api_key=google_api_key, client_info=client_info, client_options=self.client_options, transport=transport, ) self.async_client_running = None return self @property def async_client(self) -> v1betaGenerativeServiceAsyncClient: google_api_key = None if not self.credentials: if isinstance(self.google_api_key, SecretStr): google_api_key = self.google_api_key.get_secret_value() else: google_api_key = self.google_api_key # NOTE: genaix.build_generative_async_service requires # a running event loop, which causes an error # when initialized inside a ThreadPoolExecutor. # this check ensures that async client is only initialized # within an asyncio event loop to avoid the error if not self.async_client_running and _is_event_loop_running(): self.async_client_running = genaix.build_generative_async_service( credentials=self.credentials, api_key=google_api_key, client_info=get_client_info("ChatGoogleGenerativeAI"), client_options=self.client_options, transport=self.transport, ) return self.async_client_running @property def _identifying_params(self) -> Dict[str, Any]: """Get the identifying parameters.""" return { "model": self.model, "temperature": self.temperature, "top_k": self.top_k, "n": self.n, "safety_settings": self.safety_settings, } def _get_ls_params( self, stop: Optional[List[str]] = None, **kwargs: Any ) -> LangSmithParams: """Get standard params for tracing.""" params = self._get_invocation_params(stop=stop, **kwargs) ls_params = LangSmithParams( ls_provider="google_genai", ls_model_name=self.model, ls_model_type="chat", ls_temperature=params.get("temperature", self.temperature), ) if ls_max_tokens := params.get("max_output_tokens", self.max_output_tokens): ls_params["ls_max_tokens"] = ls_max_tokens if ls_stop := stop or params.get("stop", None): ls_params["ls_stop"] = ls_stop return ls_params def _prepare_params( self, stop: Optional[List[str]], generation_config: Optional[Dict[str, Any]] = None, ) -> GenerationConfig: gen_config = { k: v for k, v in { "candidate_count": self.n, "temperature": self.temperature, "stop_sequences": stop, "max_output_tokens": self.max_output_tokens, "top_k": self.top_k, "top_p": self.top_p, }.items() if v is not None } if generation_config: gen_config = {**gen_config, **generation_config} return GenerationConfig(**gen_config) def _generate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, *, tools: Optional[Sequence[Union[ToolDict, GoogleTool]]] = None, functions: Optional[Sequence[FunctionDeclarationType]] = None, safety_settings: Optional[SafetySettingDict] = None, tool_config: Optional[Union[Dict, _ToolConfigDict]] = None, generation_config: Optional[Dict[str, Any]] = None, cached_content: Optional[str] = None, tool_choice: Optional[Union[_ToolChoiceType, bool]] = None, **kwargs: Any, ) -> ChatResult: request = self._prepare_request( messages, stop=stop, tools=tools, functions=functions, safety_settings=safety_settings, tool_config=tool_config, generation_config=generation_config, cached_content=cached_content or self.cached_content, tool_choice=tool_choice, ) response: GenerateContentResponse = _chat_with_retry( request=request, **kwargs, generation_method=self.client.generate_content, metadata=self.default_metadata, ) return _response_to_result(response) async def _agenerate( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, *, tools: Optional[Sequence[Union[ToolDict, GoogleTool]]] = None, functions: Optional[Sequence[FunctionDeclarationType]] = None, safety_settings: Optional[SafetySettingDict] = None, tool_config: Optional[Union[Dict, _ToolConfigDict]] = None, generation_config: Optional[Dict[str, Any]] = None, cached_content: Optional[str] = None, tool_choice: Optional[Union[_ToolChoiceType, bool]] = None, **kwargs: Any, ) -> ChatResult: if not self.async_client: updated_kwargs = { **kwargs, **{ "tools": tools, "functions": functions, "safety_settings": safety_settings, "tool_config": tool_config, "generation_config": generation_config, }, } return await super()._agenerate( messages, stop, run_manager, **updated_kwargs ) request = self._prepare_request( messages, stop=stop, tools=tools, functions=functions, safety_settings=safety_settings, tool_config=tool_config, generation_config=generation_config, cached_content=cached_content or self.cached_content, tool_choice=tool_choice, ) response: GenerateContentResponse = await _achat_with_retry( request=request, **kwargs, generation_method=self.async_client.generate_content, metadata=self.default_metadata, ) return _response_to_result(response) def _stream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, *, tools: Optional[Sequence[Union[ToolDict, GoogleTool]]] = None, functions: Optional[Sequence[FunctionDeclarationType]] = None, safety_settings: Optional[SafetySettingDict] = None, tool_config: Optional[Union[Dict, _ToolConfigDict]] = None, generation_config: Optional[Dict[str, Any]] = None, cached_content: Optional[str] = None, tool_choice: Optional[Union[_ToolChoiceType, bool]] = None, **kwargs: Any, ) -> Iterator[ChatGenerationChunk]: request = self._prepare_request( messages, stop=stop, tools=tools, functions=functions, safety_settings=safety_settings, tool_config=tool_config, generation_config=generation_config, cached_content=cached_content or self.cached_content, tool_choice=tool_choice, ) response: GenerateContentResponse = _chat_with_retry( request=request, generation_method=self.client.stream_generate_content, **kwargs, metadata=self.default_metadata, ) prev_usage_metadata: UsageMetadata | None = None for chunk in response: _chat_result = _response_to_result( chunk, stream=True, prev_usage=prev_usage_metadata ) gen = cast(ChatGenerationChunk, _chat_result.generations[0]) message = cast(AIMessageChunk, gen.message) curr_usage_metadata: UsageMetadata | dict[str, int] = ( message.usage_metadata or {} ) prev_usage_metadata = ( message.usage_metadata if prev_usage_metadata is None else UsageMetadata( input_tokens=prev_usage_metadata.get("input_tokens", 0) + curr_usage_metadata.get("input_tokens", 0), output_tokens=prev_usage_metadata.get("output_tokens", 0) + curr_usage_metadata.get("output_tokens", 0), total_tokens=prev_usage_metadata.get("total_tokens", 0) + curr_usage_metadata.get("total_tokens", 0), ) ) if run_manager: run_manager.on_llm_new_token(gen.text) yield gen async def _astream( self, messages: List[BaseMessage], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, *, tools: Optional[Sequence[Union[ToolDict, GoogleTool]]] = None, functions: Optional[Sequence[FunctionDeclarationType]] = None, safety_settings: Optional[SafetySettingDict] = None, tool_config: Optional[Union[Dict, _ToolConfigDict]] = None, generation_config: Optional[Dict[str, Any]] = None, cached_content: Optional[str] = None, tool_choice: Optional[Union[_ToolChoiceType, bool]] = None, **kwargs: Any, ) -> AsyncIterator[ChatGenerationChunk]: if not self.async_client: updated_kwargs = { **kwargs, **{ "tools": tools, "functions": functions, "safety_settings": safety_settings, "tool_config": tool_config, "generation_config": generation_config, }, } async for value in super()._astream( messages, stop, run_manager, **updated_kwargs ): yield value else: request = self._prepare_request( messages, stop=stop, tools=tools, functions=functions, safety_settings=safety_settings, tool_config=tool_config, generation_config=generation_config, cached_content=cached_content or self.cached_content, tool_choice=tool_choice, ) prev_usage_metadata: UsageMetadata | None = None async for chunk in await _achat_with_retry( request=request, generation_method=self.async_client.stream_generate_content, **kwargs, metadata=self.default_metadata, ): _chat_result = _response_to_result( chunk, stream=True, prev_usage=prev_usage_metadata ) gen = cast(ChatGenerationChunk, _chat_result.generations[0]) message = cast(AIMessageChunk, gen.message) curr_usage_metadata: UsageMetadata | dict[str, int] = ( message.usage_metadata or {} ) prev_usage_metadata = ( message.usage_metadata if prev_usage_metadata is None else UsageMetadata( input_tokens=prev_usage_metadata.get("input_tokens", 0) + curr_usage_metadata.get("input_tokens", 0), output_tokens=prev_usage_metadata.get("output_tokens", 0) + curr_usage_metadata.get("output_tokens", 0), total_tokens=prev_usage_metadata.get("total_tokens", 0) + curr_usage_metadata.get("total_tokens", 0), ) ) if run_manager: await run_manager.on_llm_new_token(gen.text) yield gen def _prepare_request( self, messages: List[BaseMessage], *, stop: Optional[List[str]] = None, tools: Optional[Sequence[Union[ToolDict, GoogleTool]]] = None, functions: Optional[Sequence[FunctionDeclarationType]] = None, safety_settings: Optional[SafetySettingDict] = None, tool_config: Optional[Union[Dict, _ToolConfigDict]] = None, tool_choice: Optional[Union[_ToolChoiceType, bool]] = None, generation_config: Optional[Dict[str, Any]] = None, cached_content: Optional[str] = None, ) -> Tuple[GenerateContentRequest, Dict[str, Any]]: if tool_choice and tool_config: raise ValueError( "Must specify at most one of tool_choice and tool_config, received " f"both:\n\n{tool_choice=}\n\n{tool_config=}" ) formatted_tools = None if tools: formatted_tools = [convert_to_genai_function_declarations(tools)] elif functions: formatted_tools = [convert_to_genai_function_declarations(functions)] system_instruction, history = _parse_chat_history( messages, convert_system_message_to_human=self.convert_system_message_to_human, ) if tool_choice: if not formatted_tools: msg = ( f"Received {tool_choice=} but no {tools=}. 'tool_choice' can only " f"be specified if 'tools' is specified." ) raise ValueError(msg) all_names = [ f.name for t in formatted_tools for f in t.function_declarations ] tool_config = _tool_choice_to_tool_config(tool_choice, all_names) formatted_tool_config = None if tool_config: formatted_tool_config = ToolConfig( function_calling_config=tool_config["function_calling_config"] ) formatted_safety_settings = [] if safety_settings: formatted_safety_settings = [ SafetySetting(category=c, threshold=t) for c, t in safety_settings.items() ] request = GenerateContentRequest( model=self.model, contents=history, tools=formatted_tools, tool_config=formatted_tool_config, safety_settings=formatted_safety_settings, generation_config=self._prepare_params( stop, generation_config=generation_config ), cached_content=cached_content, ) if system_instruction: request.system_instruction = system_instruction return request
[docs] def get_num_tokens(self, text: str) -> int: """Get the number of tokens present in the text. Useful for checking if an input will fit in a model's context window. Args: text: The string input to tokenize. Returns: The integer number of tokens in the text. """ result = self.client.count_tokens( model=self.model, contents=[Content(parts=[Part(text=text)])] ) return result.total_tokens
[docs] def with_structured_output( self, schema: Union[Dict, Type[BaseModel]], *, include_raw: bool = False, **kwargs: Any, ) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]: if kwargs: raise ValueError(f"Received unsupported arguments {kwargs}") if isinstance(schema, type) and is_basemodel_subclass_safe(schema): parser: OutputParserLike = PydanticToolsParser( tools=[schema], first_tool_only=True ) else: parser = JsonOutputToolsParser() tool_choice = _get_tool_name(schema) if self._supports_tool_choice else None llm = self.bind_tools([schema], tool_choice=tool_choice) if include_raw: parser_with_fallback = RunnablePassthrough.assign( parsed=itemgetter("raw") | parser, parsing_error=lambda _: None ).with_fallbacks( [RunnablePassthrough.assign(parsed=lambda _: None)], exception_key="parsing_error", ) return {"raw": llm} | parser_with_fallback else: return llm | parser
[docs] def bind_tools( self, tools: Sequence[Union[ToolDict, GoogleTool]], tool_config: Optional[Union[Dict, _ToolConfigDict]] = None, *, tool_choice: Optional[Union[_ToolChoiceType, bool]] = None, **kwargs: Any, ) -> Runnable[LanguageModelInput, BaseMessage]: """Bind tool-like objects to this chat model. Assumes model is compatible with google-generativeAI tool-calling API. Args: tools: A list of tool definitions to bind to this chat model. Can be a pydantic model, callable, or BaseTool. Pydantic models, callables, and BaseTools will be automatically converted to their schema dictionary representation. **kwargs: Any additional parameters to pass to the :class:`~langchain.runnable.Runnable` constructor. """ if tool_choice and tool_config: raise ValueError( "Must specify at most one of tool_choice and tool_config, received " f"both:\n\n{tool_choice=}\n\n{tool_config=}" ) try: formatted_tools: list = [convert_to_openai_tool(tool) for tool in tools] # type: ignore[arg-type] except Exception: formatted_tools = [ tool_to_dict(convert_to_genai_function_declarations(tools)) ] if tool_choice: kwargs["tool_choice"] = tool_choice elif tool_config: kwargs["tool_config"] = tool_config else: pass return self.bind(tools=formatted_tools, **kwargs)
[docs] def create_cached_content( self, contents: Union[List[BaseMessage], content_types.ContentsType], *, display_name: str | None = None, tools: Union[ToolDict, GoogleTool, None] = None, tool_choice: Optional[Union[_ToolChoiceType, bool]] = None, ttl: Optional[caching_types.TTLTypes] = None, expire_time: Optional[caching_types.ExpireTimeTypes] = None, ) -> str: """ Args: display_name: The user-generated meaningful display name of the cached content. `display_name` must be no more than 128 unicode characters. contents: Contents to cache. tools: A list of `Tools` the model may use to generate response. tool_choice: Which tool to require the model to call. ttl: TTL for cached resource (in seconds). Defaults to 1 hour. `ttl` and `expire_time` are exclusive arguments. expire_time: Expiration time for cached resource. `ttl` and `expire_time` are exclusive arguments. """ system: Optional[content_types.ContentType] = None genai_contents: list = [] if all(isinstance(c, BaseMessage) for c in contents): system, genai_contents = _parse_chat_history( contents, convert_system_message_to_human=self.convert_system_message_to_human, ) elif any(isinstance(c, BaseMessage) for c in contents): raise ValueError( f"'contents' must either be a list of " f"langchain_core.messages.BaseMessage or a list " f"google.generativeai.types.content_types.ContentType, but not a mix " f"of the two. Received {contents}" ) else: for content in contents: if hasattr(content, "role") and content.role == "system": if system is not None: warnings.warn( "Received multiple pieces of content with role 'system'. " "Should only be one set of system instructions. Ignoring " "all but the first 'system' content." ) else: system = content elif isinstance(content, dict) and content.get("role") == "system": if system is not None: warnings.warn( "Received multiple pieces of content with role 'system'. " "Should only be one set of system instructions. Ignoring " "all but the first 'system' content." ) else: system = content else: genai_contents.append(content) if tools: genai_tools = [convert_to_genai_function_declarations(tools)] else: genai_tools = None if tool_choice and genai_tools: all_names = [f.name for t in genai_tools for f in t.function_declarations] tool_config = _tool_choice_to_tool_config(tool_choice, all_names) genai_tool_config = ToolConfig( function_calling_config=tool_config["function_calling_config"] ) else: genai_tool_config = None cached_content = CachedContent.create( model=self.model, system_instruction=system, contents=genai_contents, display_name=display_name, tools=genai_tools, tool_config=genai_tool_config, ttl=ttl, expire_time=expire_time, ) return cached_content.name
@property def _supports_tool_choice(self) -> bool: return ( "gemini-1.5-pro" in self.model or "gemini-1.5-flash" in self.model or "gemini-2" in self.model )
def _get_tool_name( tool: Union[ToolDict, GoogleTool], ) -> str: genai_tool = tool_to_dict(convert_to_genai_function_declarations([tool])) return [f["name"] for f in genai_tool["function_declarations"]][0] # type: ignore[index]