langchain_google_genai.genai_aqa ηζΊδ»£η
"""Google GenerativeAI Attributed Question and Answering (AQA) service.
The GenAI Semantic AQA API is a managed end to end service that allows
developers to create responses grounded on specified passages based on
a user query. For more information visit:
https://developers.generativeai.google/guide
"""
from typing import Any, List, Optional
import google.ai.generativelanguage as genai
from langchain_core.runnables import RunnableSerializable
from langchain_core.runnables.config import RunnableConfig
from pydantic import BaseModel, PrivateAttr
from . import _genai_extension as genaix
[docs]
class AqaOutput(BaseModel):
"""Output from `GenAIAqa.invoke`.
Attributes:
answer: The answer to the user's inquiry.
attributed_passages: A list of passages that the LLM used to construct
the answer.
answerable_probability: The probability of the question being answered
from the provided passages.
"""
answer: str
attributed_passages: List[str]
answerable_probability: float
class _AqaModel(BaseModel):
"""Wrapper for Google's internal AQA model."""
_client: genai.GenerativeServiceClient = PrivateAttr()
_answer_style: int = PrivateAttr()
_safety_settings: List[genai.SafetySetting] = PrivateAttr()
_temperature: Optional[float] = PrivateAttr()
def __init__(
self,
answer_style: int = genai.GenerateAnswerRequest.AnswerStyle.ABSTRACTIVE,
safety_settings: List[genai.SafetySetting] = [],
temperature: Optional[float] = None,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
self._client = genaix.build_generative_service()
self._answer_style = answer_style
self._safety_settings = safety_settings
self._temperature = temperature
def generate_answer(
self,
prompt: str,
passages: List[str],
) -> genaix.GroundedAnswer:
return genaix.generate_answer(
prompt=prompt,
passages=passages,
client=self._client,
answer_style=self._answer_style,
safety_settings=self._safety_settings,
temperature=self._temperature,
)
[docs]
class GenAIAqa(RunnableSerializable[AqaInput, AqaOutput]):
"""Google's Attributed Question and Answering service.
Given a user's query and a list of passages, Google's server will return
a response that is grounded to the provided list of passages. It will not
base the response on parametric memory.
Attributes:
answer_style: keyword-only argument. See
`google.ai.generativelanguage.AnswerStyle` for details.
"""
# Actual type is .aqa_model.AqaModel.
_client: _AqaModel = PrivateAttr()
# Actual type is genai.AnswerStyle.
# 1 = ABSTRACTIVE.
# Cannot use the actual type here because user may not have
# google.generativeai installed.
answer_style: int = 1
def __init__(self, **kwargs: Any) -> None:
"""Construct a Google Generative AI AQA model.
All arguments are optional.
Args:
answer_style: See
`google.ai.generativelanguage.GenerateAnswerRequest.AnswerStyle`.
safety_settings: See `google.ai.generativelanguage.SafetySetting`.
temperature: 0.0 to 1.0.
"""
super().__init__(**kwargs)
self._client = _AqaModel(**kwargs)
[docs]
def invoke(
self, input: AqaInput, config: Optional[RunnableConfig] = None, **kwargs: Any
) -> AqaOutput:
"""Generates a grounded response using the provided passages."""
response = self._client.generate_answer(
prompt=input.prompt, passages=input.source_passages
)
return AqaOutput(
answer=response.answer,
attributed_passages=[
passage.text for passage in response.attributed_passages
],
answerable_probability=response.answerable_probability or 0.0,
)